These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22039969)
21. An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles. Liu X; Li X; Li S; Zhou X; Li S; Wang Q; Dai J; Lai R; Xie L; Zhong M; Zhang Y; Zhou L J Biomed Nanotechnol; 2014 Feb; 10(2):194-204. PubMed ID: 24738328 [TBL] [Abstract][Full Text] [Related]
22. pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection. Dong Y; Ye H; Liu Y; Xu L; Wu Z; Hu X; Ma J; Pathak JL; Liu J; Wu G Colloids Surf B Biointerfaces; 2017 Oct; 158():127-136. PubMed ID: 28688362 [TBL] [Abstract][Full Text] [Related]
23. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Popat KC; Eltgroth M; Latempa TJ; Grimes CA; Desai TA Biomaterials; 2007 Nov; 28(32):4880-8. PubMed ID: 17697708 [TBL] [Abstract][Full Text] [Related]
24. Titanium and steel fracture fixation plates with different surface topographies: Influence on infection rate in a rabbit fracture model. Metsemakers WJ; Schmid T; Zeiter S; Ernst M; Keller I; Cosmelli N; Arens D; Moriarty TF; Richards RG Injury; 2016 Mar; 47(3):633-9. PubMed ID: 26830128 [TBL] [Abstract][Full Text] [Related]
25. Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1α signaling. Ran Q; Yu Y; Chen W; Shen X; Mu C; Yuan Z; Tao B; Hu Y; Yang W; Cai K Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():44-54. PubMed ID: 30033275 [TBL] [Abstract][Full Text] [Related]
26. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. Aw MS; Losic D Int J Pharm; 2013 Feb; 443(1-2):154-62. PubMed ID: 23313837 [TBL] [Abstract][Full Text] [Related]
27. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z; Liu P; Hao Y; Ding Y; Cai K Colloids Surf B Biointerfaces; 2018 Nov; 171():597-605. PubMed ID: 30099296 [TBL] [Abstract][Full Text] [Related]
28. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Bariana M; Aw MS; Moore E; Voelcker NH; Losic D Nanomedicine (Lond); 2014; 9(8):1263-75. PubMed ID: 24359550 [TBL] [Abstract][Full Text] [Related]
29. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Liu D; He C; Liu Z; Xu W Int J Nanomedicine; 2017; 12():5461-5471. PubMed ID: 28814863 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention. Sutrisno L; Hu Y; Shen X; Li M; Luo Z; Dai L; Wang S; Zhong JL; Cai K Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():95-105. PubMed ID: 29752124 [TBL] [Abstract][Full Text] [Related]
32. Applications of Titania Nanotubes in Bone Biology. Nair M; Elizabeth E J Nanosci Nanotechnol; 2015 Feb; 15(2):939-55. PubMed ID: 26353600 [TBL] [Abstract][Full Text] [Related]
33. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating. Fathi M; Akbari B; Taheriazam A Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109743. PubMed ID: 31349530 [TBL] [Abstract][Full Text] [Related]
34. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357 [TBL] [Abstract][Full Text] [Related]
35. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement. Tao B; Deng Y; Song L; Ma W; Qian Y; Lin C; Yuan Z; Lu L; Chen M; Yang X; Cai K Colloids Surf B Biointerfaces; 2019 May; 177():242-252. PubMed ID: 30763789 [TBL] [Abstract][Full Text] [Related]
36. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Yang Y; Ao HY; Yang SB; Wang YG; Lin WT; Yu ZF; Tang TT Int J Nanomedicine; 2016; 11():2223-34. PubMed ID: 27274245 [TBL] [Abstract][Full Text] [Related]
37. Enhanced osteogenic differentiation of bone mesenchymal stem cells on magnesium-incorporated titania nanotube arrays. Yan Y; Wei Y; Yang R; Xia L; Zhao C; Gao B; Zhang X; Fu J; Wang Q; Xu N Colloids Surf B Biointerfaces; 2019 Jul; 179():309-316. PubMed ID: 30981066 [TBL] [Abstract][Full Text] [Related]
38. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium. Nemati SH; Hadjizadeh A AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103 [TBL] [Abstract][Full Text] [Related]
39. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation. Bottlang M; Helzel I; Long W; Fitzpatrick D; Madey S J Trauma; 2010 May; 68(5):1218-24. PubMed ID: 20068479 [TBL] [Abstract][Full Text] [Related]
40. Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. Bariana M; Dwivedi P; Ranjitkar S; Kaidonis JA; Losic D; Anderson PJ Nanomedicine; 2018 Oct; 14(7):2365-2374. PubMed ID: 28648641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]