These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22039970)

  • 21. Expression and purification of aspartate beta-semialdehyde dehydrogenase from infectious microorganisms.
    Moore RA; Bocik WE; Viola RE
    Protein Expr Purif; 2002 Jun; 25(1):189-94. PubMed ID: 12071715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans.
    Dahal GP; Launder D; McKeone KMM; Hunter JP; Conti HR; Viola RE
    Drug Dev Res; 2020 Sep; 81(6):736-744. PubMed ID: 32383780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for discrimination between oxyanion substrates or inhibitors in aspartate-beta-semialdehyde dehydrogenase.
    Faehnle CR; Blanco J; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 2):2320-4. PubMed ID: 15583380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical and kinetic mechanisms of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli.
    Karsten WE; Viola RE
    Biochim Biophys Acta; 1991 Apr; 1077(2):209-19. PubMed ID: 1673060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Modeling and Active Site Binding Mode Characterization of Aspartate β-Semialdehyde Dehydrogenase Family.
    Kumar R; Garg P
    Mol Inform; 2013 Apr; 32(4):377-83. PubMed ID: 27481594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico anti-fungal efficacy and the mechanism of binding of some Syzygium aromaticum ingredient compounds to aspartate semialdehyde dehydrogenase, 6C8W and 6C85, enzymes from Blastomyces dermatitidis.
    M Al-Mazaideh G; Hf Shalayel M; Nour S; Al-Swailmi FK; Aladaileh S
    Pak J Pharm Sci; 2021 Nov; 34(6):2219-2226. PubMed ID: 35034884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early stage efficacy and toxicology screening for antibiotics and enzyme inhibitors.
    Sarver JG; Trendel JA; Bearss NR; Wang L; Luniwal A; Erhardt PW; Viola RE
    J Biomol Screen; 2012 Jun; 17(5):673-82. PubMed ID: 22460173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitors of lysine biosynthesis as antibacterial agents.
    Hutton CA; Southwood TJ; Turner JJ
    Mini Rev Med Chem; 2003 Mar; 3(2):115-27. PubMed ID: 12570844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of ternary complexes of aspartate-semialdehyde dehydrogenase (Rv3708c) from Mycobacterium tuberculosis H37Rv.
    Vyas R; Tewari R; Weiss MS; Karthikeyan S
    Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):671-9. PubMed ID: 22683789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of substrate-binding groups in the mechanism of aspartate-beta-semialdehyde dehydrogenase.
    Blanco J; Moore RA; Faehnle CR; Coe DM; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1388-95. PubMed ID: 15272161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of new benzoxazole-2-thione-derived inhibitors of Streptococcus pneumoniae hyaluronan lyase: structure of a complex with a 2-phenylindole.
    Rigden DJ; Botzki A; Nukui M; Mewbourne RB; Lamani E; Braun S; von Angerer E; Bernhardt G; Dove S; Buschauer A; Jedrzejas MJ
    Glycobiology; 2006 Aug; 16(8):757-65. PubMed ID: 16638841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.
    Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides.
    Gu W; Wang T; Maltais F; Ledford B; Kennedy J; Wei Y; Gross CH; Parsons J; Duncan L; Arends SJ; Moody C; Perola E; Green J; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3693-8. PubMed ID: 22560473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part 2: 4-amino-pyrido[2,3-d]pyrimidin-5(8H)-ones.
    Wang T; Duncan L; Gu W; O'Dowd H; Wei Y; Perola E; Parsons J; Gross CH; Moody CS; Arends SJ; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3699-703. PubMed ID: 22560470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new synthesis of phosphoramidates: inhibitors of the key bacterial enzyme aspartate semi-aldehyde dehydrogenase.
    Adams LA; Cox RJ; Gibson JS; Mayo-Martín MB; Walter M; Whittingham W
    Chem Commun (Camb); 2002 Sep; (18):2004-5. PubMed ID: 12357751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular modelling and comparative structural account of aspartyl beta-semialdehyde dehydrogenase of Mycobacterium tuberculosis (H37Rv).
    Singh A; Kushwaha HR; Sharma P
    J Mol Model; 2008 Apr; 14(4):249-63. PubMed ID: 18236087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli, a key enzyme in the aspartate family of amino acid biosynthesis.
    Hadfield A; Kryger G; Ouyang J; Petsko GA; Ringe D; Viola R
    J Mol Biol; 1999 Jun; 289(4):991-1002. PubMed ID: 10369777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new branch in the family: structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii.
    Faehnle CR; Ohren JF; Viola RE
    J Mol Biol; 2005 Nov; 353(5):1055-68. PubMed ID: 16225889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations.
    Zaman Z; Khan S; Nouroz F; Farooq U; Urooj A
    Life Sci; 2021 Jan; 264():118621. PubMed ID: 33164832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.
    Islam Z; Kumar A; Singh S; Salmon L; Karthikeyan S
    J Biol Chem; 2015 May; 290(18):11293-308. PubMed ID: 25792735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.