These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 22039992)
1. Tuning high aqueous phase uptake in nonionic water-in-oil microemulsions for the synthesis of Mn-Zn ferrite nanoparticles: phase behavior, characterization, and nanoparticle synthesis. Aubery C; Solans C; Sanchez-Dominguez M Langmuir; 2011 Dec; 27(23):14005-13. PubMed ID: 22039992 [TBL] [Abstract][Full Text] [Related]
2. Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Aubery C; Solans C; Prevost S; Gradzielski M; Sanchez-Dominguez M Langmuir; 2013 Feb; 29(6):1779-89. PubMed ID: 23305179 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization. Sivakumar M; Towata A; Yasui K; Tuziuti T; Kozuka T; Iida Y; Maiorov MM; Blums E; Bhattacharya D; Sivakumar N; Ashok M Ultrason Sonochem; 2012 May; 19(3):652-8. PubMed ID: 22113061 [TBL] [Abstract][Full Text] [Related]
4. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence. Wilk KA; Zielińska K; Hamerska-Dudra A; Jezierski A J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561 [TBL] [Abstract][Full Text] [Related]
5. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature. Sivakumar M; Takami T; Ikuta H; Towata A; Yasui K; Tuziuti T; Kozuka T; Bhattacharya D; Iida Y J Phys Chem B; 2006 Aug; 110(31):15234-43. PubMed ID: 16884240 [TBL] [Abstract][Full Text] [Related]
7. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122 [TBL] [Abstract][Full Text] [Related]
8. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Djekic L; Primorac M Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components. Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984 [TBL] [Abstract][Full Text] [Related]
10. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Cho YH; Kim S; Bae EK; Mok CK; Park J J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105 [TBL] [Abstract][Full Text] [Related]
11. Protein delivery using nanoparticles based on microemulsions with different structure-types. Graf A; Jack KS; Whittaker AK; Hook SM; Rades T Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862 [TBL] [Abstract][Full Text] [Related]
13. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies. Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723 [TBL] [Abstract][Full Text] [Related]
14. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry. Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716 [TBL] [Abstract][Full Text] [Related]
15. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion. Sripriya R; Muthu Raja K; Santhosh G; Chandrasekaran M; Noel M J Colloid Interface Sci; 2007 Oct; 314(2):712-7. PubMed ID: 17585927 [TBL] [Abstract][Full Text] [Related]
16. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. Krauel K; Davies NM; Hook S; Rades T J Control Release; 2005 Aug; 106(1-2):76-87. PubMed ID: 15967536 [TBL] [Abstract][Full Text] [Related]
17. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution. Garti N; Avrahami M; Aserin A J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763 [TBL] [Abstract][Full Text] [Related]
18. Study of nano-emulsion formation by dilution of microemulsions. Solè I; Solans C; Maestro A; González C; Gutiérrez JM J Colloid Interface Sci; 2012 Jun; 376(1):133-9. PubMed ID: 22480397 [TBL] [Abstract][Full Text] [Related]
19. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Machado AH; Lundberg D; Ribeiro AJ; Veiga FJ; Lindman B; Miguel MG; Olsson U Langmuir; 2012 Mar; 28(9):4131-41. PubMed ID: 22296569 [TBL] [Abstract][Full Text] [Related]
20. Evolution of equilibrium Pickering emulsions--a matter of time scales. Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]