These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22040004)

  • 1. Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates.
    Einsle JF; Bouillard JS; Dickson W; Zayats AV
    Nanoscale Res Lett; 2011 Oct; 6(1):572. PubMed ID: 22040004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition.
    Dhawan A; Gerhold M; Madison A; Fowlkes J; Russell PE; Vo-Dinh T; Leonard DN
    Scanning; 2009; 31(4):139-46. PubMed ID: 19670460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study of Gallium-, Xenon-, and Helium-Focused Ion Beams for the Milling of GaN.
    Jiang S; Ortalan V
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial graphene growth on FIB patterned 3C-SiC nanostructures on Si (111): reducing milling damage.
    Amjadipour M; MacLeod J; Lipton-Duffin J; Iacopi F; Motta N
    Nanotechnology; 2017 Aug; 28(34):345602. PubMed ID: 28548043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures.
    Wu X; Geisler P; Krauss E; Kullock R; Hecht B
    Nanoscale; 2015 Oct; 7(39):16427-33. PubMed ID: 26395208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the focus ion beam milling process on the optical properties of semiconductor nanostructures.
    Bellini E; Taurino A; Catalano M; Lomascolo M; Passaseo A; Vasanelli L
    Nanotechnology; 2009 Jun; 20(25):255306. PubMed ID: 19487808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling new principles of site-selective doping contrast in the dual-beam focused ion beam/scanning electron microscope.
    Chee AKW
    Ultramicroscopy; 2020 Jun; 213():112947. PubMed ID: 32361280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fabrication of atom probe tomography specimens of Al alloys at room temperature using focused ion beam milling with liquid Ga ion source.
    Mondal S; Bansal U; Makineni SK
    Microsc Res Tech; 2022 Sep; 85(9):3040-3049. PubMed ID: 35560854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage protection from focused ion beam process toward nanocavity-implemented compound semiconductor nanowire lasers.
    Takiguchi M; Zhang G; Sasaki S; Tateno K; John C; Ono M; Sumikura H; Shinya A; Notomi M
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36608329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical emission from focused ion beam milled halide perovskite device cross-sections.
    Kosasih FU; Divitini G; Orri JF; Tennyson EM; Kusch G; Oliver RA; Stranks SD; Ducati C
    Microsc Res Tech; 2022 Jun; 85(6):2351-2355. PubMed ID: 35118749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of TEM samples of an Mg-Al alloy prepared using FIB milling at the operating voltages of 10 kV and 40 kV.
    Kamino T; Yaguchi T; Kuroda Y; Ohnishi T; Ishitani T; Miyahara Y; Horita Z
    J Electron Microsc (Tokyo); 2004; 53(5):459-63. PubMed ID: 15582947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of glass microlenses using focused Xe beam.
    Gorelick S; De Marco A
    Opt Express; 2018 May; 26(10):13647-13655. PubMed ID: 29801387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the morphological effects of high-energy Ga
    Klaiss R; Ziegler J; Miller D; Zappitelli K; Watanabe K; Taniguchi T; Alemán B
    J Chem Phys; 2022 Aug; 157(7):074703. PubMed ID: 35987573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of using stencil masks made by focused ion beam milling on permalloy (Ni81Fe19) nanostructures.
    Bates JR; Miyahara Y; Burgess JA; Iglesias-Freire O; Grütter P
    Nanotechnology; 2013 Mar; 24(11):115301. PubMed ID: 23449320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.
    Jin HH; Shin C; Kwon J
    J Electron Microsc (Tokyo); 2010; 59(6):463-8. PubMed ID: 20484144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Approach for Sensitive Characterization of Semiconductor Laser Beams Using Metal-Semiconductor Thermocouples.
    Piotrowska AK; Łaszcz A; Zaborowski M; Broda A; Szmigiel D
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.
    Chen RS; Tang CC; Shen WC; Huang YS
    J Vis Exp; 2015 Dec; (106):e53200. PubMed ID: 26710105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.
    Eifert A; Mizaikoff B; Kranz C
    Micron; 2015 Jan; 68():27-35. PubMed ID: 25259683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.