These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22040124)
1. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy. Lu S; Ji L; He W; Dai P; Yang H; Arimochi M; Yoshida H; Uchida S; Ikeda M Nanoscale Res Lett; 2011 Oct; 6(1):576. PubMed ID: 22040124 [TBL] [Abstract][Full Text] [Related]
2. Performance comparison of III-V//Si and III-V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Kao YC; Chou HM; Hsu SC; Lin A; Lin CC; Shih ZH; Chang CL; Hong HF; Horng RH Sci Rep; 2019 Mar; 9(1):4308. PubMed ID: 30867491 [TBL] [Abstract][Full Text] [Related]
3. Performance assessment of multijunction solar cells incorporating GaInNAsSb. Aho A; Tukiainen A; Polojärvi V; Guina M Nanoscale Res Lett; 2014 Feb; 9(1):61. PubMed ID: 24498981 [TBL] [Abstract][Full Text] [Related]
4. Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber. Paulauskas T; Pačebutas V; Strazdienė V; Geižutis A; Devenson J; Kamarauskas M; Skapas M; Kondrotas R; Drazdys M; Rudzikas M; Šebeka B; Vretenár V; Krotkus A Discov Nano; 2023 Jun; 18(1):86. PubMed ID: 37382743 [TBL] [Abstract][Full Text] [Related]
5. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells. Deng Z; Ning J; Su Z; Xu S; Xing Z; Wang R; Lu S; Dong J; Zhang B; Yang H ACS Appl Mater Interfaces; 2015 Jan; 7(1):690-5. PubMed ID: 25479245 [TBL] [Abstract][Full Text] [Related]
6. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics. Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560 [TBL] [Abstract][Full Text] [Related]
7. GaAs/GaInP nanowire solar cell on Si with state-of-the-art Tong C; Delamarre A; De Lépinau R; Scaccabarozzi A; Oehler F; Harmand JC; Collin S; Cattoni A Nanoscale; 2022 Sep; 14(35):12722-12735. PubMed ID: 35997103 [TBL] [Abstract][Full Text] [Related]
9. Gallium arsenide solar cells grown at rates exceeding 300 µm h Metaferia W; Schulte KL; Simon J; Johnston S; Ptak AJ Nat Commun; 2019 Jul; 10(1):3361. PubMed ID: 31350402 [TBL] [Abstract][Full Text] [Related]
10. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Kwoen J; Jang B; Lee J; Kageyama T; Watanabe K; Arakawa Y Opt Express; 2018 Apr; 26(9):11568-11576. PubMed ID: 29716075 [TBL] [Abstract][Full Text] [Related]
11. Improving Radiation Resistance of GaInP/GaInAs/Ge Triple-Junction Solar Cells Using GaInP Back-Surface Field in the Middle Subcell. Gao H; Yang R; Zhang Y Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32331238 [TBL] [Abstract][Full Text] [Related]
12. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate. Azeza B; Hadj Alouane MH; Ilahi B; Patriarche G; Sfaxi L; Fouzri A; Maaref H; M'ghaieth R Materials (Basel); 2015 Jul; 8(7):4544-4552. PubMed ID: 28793455 [TBL] [Abstract][Full Text] [Related]
13. Damage Characteristics Analysis of Laser Ablation Triple-Junction Solar Cells Based on Electroluminescence Characteristics. Guo W; Ye J; Chang H; Yu C Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123932 [TBL] [Abstract][Full Text] [Related]
14. Investigation of GaInAs strain reducing layer combined with InAs quantum dots embedded in Ga(In)As subcell of triple junction GaInP/Ga(In)As/Ge solar cell. Li S; Bi J; Li M; Yang M; Song M; Liu G; Xiong W; Li Y; Fang Y; Chen C; Lin G; Chen W; Wu C; Wang D Nanoscale Res Lett; 2015; 10():111. PubMed ID: 25852406 [TBL] [Abstract][Full Text] [Related]
15. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy. Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011 [TBL] [Abstract][Full Text] [Related]
16. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells. Jung SH; Kim Y; Kim CZ; Jun DH; Kim K; Shin HB; Choi J; Park WK; Lee J; Kang HK J Nanosci Nanotechnol; 2017 Apr; 17(4):2559-562. PubMed ID: 29658687 [TBL] [Abstract][Full Text] [Related]
17. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate. Cirlin G; Bouravleuv A; Soshnikov I; Samsonenko YB; Dubrovskii V; Arakcheeva E; Tanklevskaya E; Werner P Nanoscale Res Lett; 2009 Nov; 5(2):360-3. PubMed ID: 20672038 [TBL] [Abstract][Full Text] [Related]
18. Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III-V Multijunction Solar Cells. Reuna J; Hietalahti A; Aho A; Isoaho R; Aho T; Vuorinen M; Tukiainen A; Anttola E; Guina M ACS Appl Energy Mater; 2022 May; 5(5):5804-5810. PubMed ID: 35647495 [TBL] [Abstract][Full Text] [Related]
19. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy. Fukui T; Yoshimura M; Nakai E; Tomioka K Ambio; 2012; 41 Suppl 2(Suppl 2):119-24. PubMed ID: 22434437 [TBL] [Abstract][Full Text] [Related]
20. Dilute nitride and GaAs n-i-p-i solar cells. Mazzucato S; Royall B; Ketlhwaafetse R; Balkan N; Salmi J; Puustinen J; Guina M; Smith A; Gwilliam R Nanoscale Res Lett; 2012 Nov; 7(1):631. PubMed ID: 23167964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]