BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22040320)

  • 1. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei.
    Krog JS; Español Y; Giessing AM; Dziergowska A; Malkiewicz A; Ribas de Pouplana L; Kirpekar F
    FEBS J; 2011 Dec; 278(24):4782-96. PubMed ID: 22040320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
    Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR
    Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species.
    Yarian C; Marszalek M; Sochacka E; Malkiewicz A; Guenther R; Miskiewicz A; Agris PF
    Biochemistry; 2000 Nov; 39(44):13390-5. PubMed ID: 11063576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys).
    Helm M; Attardi G
    J Mol Biol; 2004 Mar; 337(3):545-60. PubMed ID: 15019776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry.
    Mengel-Jørgensen J; Kirpekar F
    Nucleic Acids Res; 2002 Dec; 30(23):e135. PubMed ID: 12466567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified nucleosides in the first positions of the anticodons of tRNA(Leu)4 and tRNA(Leu)5 from Escherichia coli.
    Horie N; Yamaizumi Z; Kuchino Y; Takai K; Goldman E; Miyazawa T; Nishimura S; Yokoyama S
    Biochemistry; 1999 Jan; 38(1):207-17. PubMed ID: 9890900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk.
    Xie P; Wei FY; Hirata S; Kaitsuka T; Suzuki T; Suzuki T; Tomizawa K
    Clin Chem; 2013 Nov; 59(11):1604-12. PubMed ID: 23974085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of modifications in codon discrimination by tRNA(Lys)UUU.
    Murphy FV; Ramakrishnan V; Malkiewicz A; Agris PF
    Nat Struct Mol Biol; 2004 Dec; 11(12):1186-91. PubMed ID: 15558052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
    Addepalli B; Lesner NP; Limbach PA
    RNA; 2015 Oct; 21(10):1746-56. PubMed ID: 26221047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet.
    Houssier C; Grosjean H
    J Biomol Struct Dyn; 1985 Oct; 3(2):387-408. PubMed ID: 3917029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae.
    Ohira T; Miyauchi K; Sakaguchi Y; Suzuki T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):301-2. PubMed ID: 19749380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry.
    Ross R; Cao X; Yu N; Limbach PA
    Methods; 2016 Sep; 107():73-8. PubMed ID: 27033178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA.
    Kirpekar F; Hansen LH; Rasmussen A; Poehlsgaard J; Vester B
    J Mol Biol; 2005 May; 348(3):563-73. PubMed ID: 15826654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of human tRNA Lys,3 UUU: the role of modified bases in mRNA recognition.
    McCrate NE; Varner ME; Kim KI; Nagan MC
    Nucleic Acids Res; 2006; 34(19):5361-8. PubMed ID: 17012271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranscriptional modification of tRNA in psychrophilic bacteria.
    Dalluge JJ; Hamamoto T; Horikoshi K; Morita RY; Stetter KO; McCloskey JA
    J Bacteriol; 1997 Mar; 179(6):1918-23. PubMed ID: 9068636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of anticodon wobble uridine modifications affects tRNA(Lys) function and protein levels in Saccharomyces cerevisiae.
    Klassen R; Grunewald P; Thüring KL; Eichler C; Helm M; Schaffrath R
    PLoS One; 2015; 10(3):e0119261. PubMed ID: 25747122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandemly linked tRNA(Gln), tRNA(Val) and tRNA(Lys) genes in Trypanosoma brucei.
    Campbell DA
    Nucleic Acids Res; 1989 Nov; 17(22):9479. PubMed ID: 2587272
    [No Abstract]   [Full Text] [Related]  

  • 18. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.
    Morin A; Auxilien S; Senger B; Tewari R; Grosjean H
    RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature on tRNA modification in archaea: Methanococcoides burtonii (optimum growth temperature [Topt], 23 degrees C) and Stetteria hydrogenophila (Topt, 95 degrees C).
    Noon KR; Guymon R; Crain PF; McCloskey JA; Thomm M; Lim J; Cavicchioli R
    J Bacteriol; 2003 Sep; 185(18):5483-90. PubMed ID: 12949100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of N-palmitoylated human growth hormone by in situ liquid-liquid extraction and MALDI tandem mass spectrometry.
    Sachon E; Nielsen PF; Jensen ON
    J Mass Spectrom; 2007 Jun; 42(6):724-34. PubMed ID: 17428000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.