These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22040365)

  • 1. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures.
    Sun Z; Kim JH; Zhao Y; Bijarbooneh F; Malgras V; Lee Y; Kang YM; Dou SX
    J Am Chem Soc; 2011 Dec; 133(48):19314-7. PubMed ID: 22040365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties.
    Song K; Lee Y; Jo MR; Nam KM; Kang YM
    Nanotechnology; 2012 Dec; 23(50):505401. PubMed ID: 23186940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled synthesis of heterogeneous metal-titania nanostructures and their applications.
    Liu R; Sen A
    J Am Chem Soc; 2012 Oct; 134(42):17505-12. PubMed ID: 22524321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.
    Li XY; Chen LH; Rooke JC; Deng Z; Hu ZY; Wang SZ; Wang L; Li Y; Krief A; Su BL
    J Colloid Interface Sci; 2013 Mar; 394():252-62. PubMed ID: 23261338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant free most probable TiO₂ nanostructures via hydrothermal and its dye sensitized solar cell properties.
    Mali SS; Kim H; Shim CS; Patil PS; Kim JH; Hong CK
    Sci Rep; 2013 Oct; 3():3004. PubMed ID: 24141599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties.
    Wang C; Shao C; Zhang X; Liu Y
    Inorg Chem; 2009 Aug; 48(15):7261-8. PubMed ID: 19722695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic study of the structure-property relationships of branched hierarchical TiO2/ZnO nanostructures.
    Athauda TJ; Neff JG; Sutherlin L; Butt U; Ozer RR
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6917-26. PubMed ID: 23176126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells.
    Li SS; Chang CP; Lin CC; Lin YY; Chang CH; Yang JR; Chu MW; Chen CW
    J Am Chem Soc; 2011 Aug; 133(30):11614-20. PubMed ID: 21682313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures.
    Wang C; Yin L; Zhang L; Qi Y; Lun N; Liu N
    Langmuir; 2010 Aug; 26(15):12841-8. PubMed ID: 20597492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical TiO2 nanospheres with dominant {001} facets: facile synthesis, growth mechanism, and photocatalytic activity.
    Li H; Zeng Y; Huang T; Piao L; Yan Z; Liu M
    Chemistry; 2012 Jun; 18(24):7525-32. PubMed ID: 22499525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications.
    Zhu Q; Qian J; Pan H; Tu L; Zhou X
    Nanotechnology; 2011 Sep; 22(39):395703. PubMed ID: 21891858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SiO2 nanowires growing on hexagonally arranged circular patterns surrounded by TiO2 films.
    An X; Meng G; Wei Q; Kong M; Zhang L
    J Phys Chem B; 2006 Jan; 110(1):222-6. PubMed ID: 16471525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oriented single crystalline titanium dioxide nanowires.
    Liu B; Boercker JE; Aydil ES
    Nanotechnology; 2008 Dec; 19(50):505604. PubMed ID: 19942776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of TiO(2) nano-network on titanium surface increases the human cell growth.
    Chiang CY; Chiou SH; Yang WE; Hsu ML; Yung MC; Tsai ML; Chen LK; Huang HH
    Dent Mater; 2009 Aug; 25(8):1022-9. PubMed ID: 19329175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous phase- and size-controlled synthesis of TiO(2) nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors.
    Koo B; Park J; Kim Y; Choi SH; Sung YE; Hyeon T
    J Phys Chem B; 2006 Dec; 110(48):24318-23. PubMed ID: 17134182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and growth mechanism of three-dimensional spherical TiO(2) architectures consisting of TiO(2) nanorods with {110} exposed facets.
    Sang Y; Geng B; Yang J
    Nanoscale; 2010 Oct; 2(10):2109-13. PubMed ID: 20680225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties.
    Zhu CL; Yu HL; Zhang Y; Wang TS; Ouyang QY; Qi LH; Chen YJ; Xue XY
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):665-71. PubMed ID: 22264080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.