These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22040462)

  • 21. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites.
    Brennan LJ; Purcell-Milton F; Salmeron AS; Zhang H; Govorov AO; Fedorov AV; Gun'ko YK
    Nanoscale Res Lett; 2015; 10():38. PubMed ID: 25852335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embedding plasmonic nanostructure diodes enhances hot electron emission.
    Knight MW; Wang Y; Urban AS; Sobhani A; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1687-92. PubMed ID: 23452192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterojunction synergies in titania-supported gold photocatalysts: implications for solar hydrogen production.
    Jovic V; Smith KE; Idriss H; Waterhouse GI
    ChemSusChem; 2015 Aug; 8(15):2551-9. PubMed ID: 26105614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride-Semiconductor Interfaces.
    Yu MW; Ishii S; Shinde SL; Tanjaya NK; Chen KP; Nagao T
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56562-56567. PubMed ID: 33259198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons.
    Mubeen S; Lee J; Singh N; Krämer S; Stucky GD; Moskovits M
    Nat Nanotechnol; 2013 Apr; 8(4):247-51. PubMed ID: 23435280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells.
    Das A; Deepa M; Ghosal P
    Chemphyschem; 2017 Apr; 18(7):736-748. PubMed ID: 28070927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2.
    Ranasingha O; Wang H; Zobač V; Jelínek P; Panapitiya G; Neukirch AJ; Prezhdo OV; Lewis JP
    J Phys Chem Lett; 2016 Apr; 7(8):1563-9. PubMed ID: 27043706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons.
    Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A
    Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.
    Kongkanand A; Tvrdy K; Takechi K; Kuno M; Kamat PV
    J Am Chem Soc; 2008 Mar; 130(12):4007-15. PubMed ID: 18311974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.
    Ding Y; Sheng J; Yang Z; Jiang L; Mo L; Hu L; Que Y; Dai S
    ChemSusChem; 2016 Apr; 9(7):720-7. PubMed ID: 26915757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilayered Plasmonic Heterostructure of Gold and Titania Nanoparticles for Solar Fuel Production.
    Kim J; Son HY; Nam YS
    Sci Rep; 2018 Jul; 8(1):10464. PubMed ID: 29993015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable electron and hole injection channels at plasmonic Al-TiO
    Ma J; Zhang X; Gao S
    Nanoscale; 2021 Sep; 13(33):14073-14080. PubMed ID: 34477688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoinduced kinetics of SERS in bioinorganic hybrid systems. a case study: dopamine-TiO2.
    Finkelstein-Shapiro D; Tarakeshwar P; Rajh T; Mujica V
    J Phys Chem B; 2010 Nov; 114(45):14642-5. PubMed ID: 20687568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral characteristics and photosensitization of TiO2 nanoparticles in reverse micelles by perylenes.
    Hernández LI; Godin R; Bergkamp JJ; Llansola Portolés MJ; Sherman BD; Tomlin J; Kodis G; Méndez-Hernández DD; Bertolotti S; Chesta CA; Mariño-Ochoa E; Moore AL; Moore TA; Cosa G; Palacios RE
    J Phys Chem B; 2013 Apr; 117(16):4568-81. PubMed ID: 23189921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.
    Ding H; Lv J; Wu H; Chai G; Liu A
    R Soc Open Sci; 2018 Jan; 5(1):171350. PubMed ID: 29410838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.