BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2204057)

  • 21. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain.
    Scott DJ; Dean DR; Newton WE
    J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW
    Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.
    Davis R; Lehman L; Petrovich R; Shah VK; Roberts GP; Ludden PW
    J Bacteriol; 1996 Mar; 178(5):1445-50. PubMed ID: 8631723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of substrates (methyl isocyanide, C2H2) and inhibitor (CO) on resting-state wild-type and NifV(-)Klebsiella pneumoniae MoFe proteins.
    McLean PA; True A; Nelson MJ; Lee HI; Hoffman BM; Orme-Johnson WH
    J Inorg Biochem; 2003 Jan; 93(1-2):18-32. PubMed ID: 12538049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergic binding of carbon monoxide and cyanide to the FeMo cofactor of nitrogenase: relic chemistry of an ancient enzyme?
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Fairhurst SA; Best SP
    Chemistry; 2004 Oct; 10(19):4770-6. PubMed ID: 15372690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition.
    Pham DN; Burgess BK
    Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyanide and methylisocyanide binding to the isolated iron-molybdenum cofactor of nitrogenase.
    Conradson SD; Burgess BK; Vaughn SA; Roe AL; Hedman B; Hodgson KO; Holm RH
    J Biol Chem; 1989 Sep; 264(27):15967-74. PubMed ID: 2777773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii.
    Allen RM; Homer MJ; Chatterjee R; Ludden PW; Roberts GP; Shah VK
    J Biol Chem; 1993 Nov; 268(31):23670-4. PubMed ID: 8226893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homocitrate cures the NifV- phenotype in Klebsiella pneumoniae.
    Hoover TR; Imperial J; Ludden PW; Shah VK
    J Bacteriol; 1988 Apr; 170(4):1978-9. PubMed ID: 3127384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporation of molybdenum into the iron-molybdenum cofactor of nitrogenase.
    Allen RM; Roll JT; Rangaraj P; Shah VK; Roberts GP; Ludden PW
    J Biol Chem; 1999 May; 274(22):15869-74. PubMed ID: 10336491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The inactive MoFe protein (NifB-Kp1) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Its interaction with FeMo-cofactor and the properties of the active MoFe protein formed.
    Hawkes TR; Smith BE
    Biochem J; 1984 Nov; 223(3):783-92. PubMed ID: 6095809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase.
    Christiansen J; Seefeldt LC; Dean DR
    J Biol Chem; 2000 Nov; 275(46):36104-7. PubMed ID: 10948195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogenase from Klebsiella pneumoniae. An e.p.r. signal observed during enzyme turnover under ethylene is associated with the iron-molybdenum cofactor.
    Hawkes TR; Lowe DJ; Smith BE
    Biochem J; 1983 May; 211(2):495-7. PubMed ID: 6307282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogenase cofactor biosynthesis using proteins produced in mitochondria of
    Dobrzyńska K; Pérez-González A; Echavarri-Erasun C; Coroian D; Salinero-Lanzarote A; Veldhuizen M; Dean DR; Burén S; Rubio LM
    mBio; 2024 Feb; 15(2):e0308823. PubMed ID: 38126768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase.
    Shah VK; Rangaraj P; Chatterjee R; Allen RM; Roll JT; Roberts GP; Ludden PW
    J Bacteriol; 1999 May; 181(9):2797-801. PubMed ID: 10217770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase.
    Zhao D; Curatti L; Rubio LM
    J Biol Chem; 2007 Dec; 282(51):37016-25. PubMed ID: 17959596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein.
    Shen J; Dean DR; Newton WE
    Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.
    Dance I
    Dalton Trans; 2011 Jun; 40(24):6480-9. PubMed ID: 21584340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.