BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 22040679)

  • 1. γ-Tocotrienol protects against mitochondrial dysfunction and renal cell death.
    Nowak G; Bakajsova D; Hayes C; Hauer-Jensen M; Compadre CM
    J Pharmacol Exp Ther; 2012 Feb; 340(2):330-8. PubMed ID: 22040679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury.
    Shaik ZP; Fifer EK; Nowak G
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F423-32. PubMed ID: 18077599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules.
    Nowak G; Bakajsova D; Samarel AM
    Am J Physiol Renal Physiol; 2011 Jul; 301(1):F197-208. PubMed ID: 21289057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.
    Nowak G; Soundararajan S; Mestril R
    Am J Physiol Renal Physiol; 2013 Sep; 305(5):F764-76. PubMed ID: 23804450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase Cε targets respiratory chain and mitochondrial membrane potential but not F
    Nowak G; Bakajsova-Takacsova D
    J Cell Biochem; 2018 Nov; 119(11):9394-9407. PubMed ID: 30074270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase C-α activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells.
    Nowak G; Bakajsova D
    Am J Physiol Renal Physiol; 2012 Aug; 303(4):F515-26. PubMed ID: 22674023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells.
    Nowak G; Clifton GL; Bakajsova D
    J Pharmacol Exp Ther; 2008 Mar; 324(3):1155-62. PubMed ID: 18055880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells.
    Nowak G; Clifton GL; Godwin ML; Bakajsova D
    Am J Physiol Renal Physiol; 2006 Oct; 291(4):F840-55. PubMed ID: 16705147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells.
    Nowak G; Bakajsova D; Clifton GL
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F307-16. PubMed ID: 14570699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linoleic acid epoxide promotes the maintenance of mitochondrial function and active Na+ transport following hypoxia.
    Nowak G; Grant DF; Moran JH
    Toxicol Lett; 2004 Mar; 147(2):161-75. PubMed ID: 14757320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of mitochondrial functions and cell viability in renal cells overexpressing protein kinase C isozymes.
    Nowak G; Bakajsova D
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23328793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. γ-Tocotrienol Protects against Mitochondrial Dysfunction, Energy Deficits, Morphological Damage, and Decreases in Renal Functions after Renal Ischemia.
    Nowak G; Megyesi J
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells.
    Nowak G
    J Biol Chem; 2002 Nov; 277(45):43377-88. PubMed ID: 12218054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C-α interaction with F0F1-ATPase promotes F0F1-ATPase activity and reduces energy deficits in injured renal cells.
    Nowak G; Bakajsova D
    J Biol Chem; 2015 Mar; 290(11):7054-66. PubMed ID: 25627689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase C mediates repair of mitochondrial and transport functions after toxicant-induced injury in renal cells.
    Nowak G
    J Pharmacol Exp Ther; 2003 Jul; 306(1):157-65. PubMed ID: 12665543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal cell regeneration following oxidant exposure: inhibition by TGF-beta1 and stimulation by ascorbic acid.
    Nowak G; Schnellmann RG
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):175-83. PubMed ID: 9221835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of cellular functions following oxidant injury.
    Nowak G; Aleo MD; Morgan JA; Schnellmann RG
    Am J Physiol; 1998 Mar; 274(3):F509-15. PubMed ID: 9530267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling of mitochondrial biogenesis following oxidant injury.
    Rasbach KA; Schnellmann RG
    J Biol Chem; 2007 Jan; 282(4):2355-62. PubMed ID: 17116659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C-alpha inhibits the repair of oxidative phosphorylation after S-(1,2-dichlorovinyl)-L-cysteine injury in renal cells.
    Liu X; Godwin ML; Nowak G
    Am J Physiol Renal Physiol; 2004 Jul; 287(1):F64-73. PubMed ID: 14996667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase B/Akt modulates nephrotoxicant-induced necrosis in renal cells.
    Shaik ZP; Fifer EK; Nowak G
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F292-303. PubMed ID: 16940564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.