BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22041023)

  • 1. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins.
    Chan NL; Hou C; Zhang T; Yuan F; Machwe A; Huang J; Orren DK; Gu L; Li GM
    J Biol Chem; 2012 Aug; 287(36):30151-6. PubMed ID: 22787159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins.
    Hou C; Zhang T; Tian L; Huang J; Gu L; Li GM
    Cell Biosci; 2011 Mar; 1(1):11. PubMed ID: 21711735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
    Chan NL; Guo J; Zhang T; Mao G; Hou C; Yuan F; Huang J; Zhang Y; Wu J; Gu L; Li GM
    J Biol Chem; 2013 May; 288(21):15015-22. PubMed ID: 23585564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat.
    Blackwood JK; Okely EA; Zahra R; Eykelenboom JK; Leach DR
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22582-6. PubMed ID: 21149728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.
    Goula AV; Pearson CE; Della Maria J; Trottier Y; Tomkinson AE; Wilson DM; Merienne K
    Biochemistry; 2012 May; 51(18):3919-32. PubMed ID: 22497302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington's disease via insertion sequences of its catalytic domain.
    Chan KY; Li X; Ortega J; Gu L; Li GM
    J Biol Chem; 2021 Oct; 297(4):101144. PubMed ID: 34473992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
    Liu G; Chen X; Bissler JJ; Sinden RR; Leffak M
    Nat Chem Biol; 2010 Sep; 6(9):652-9. PubMed ID: 20676085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12438-43. PubMed ID: 9770504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.