BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22041062)

  • 1. Synthetase polyspecificity as a tool to modulate protein function.
    Young DD; Jockush S; Turro NJ; Schultz PG
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7502-4. PubMed ID: 22041062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
    Young DD; Young TS; Jahnz M; Ahmad I; Spraggon G; Schultz PG
    Biochemistry; 2011 Mar; 50(11):1894-900. PubMed ID: 21280675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the substrate range of wild-type aminoacyl-tRNA synthetases.
    Fan C; Ho JML; Chirathivat N; Söll D; Wang YS
    Chembiochem; 2014 Aug; 15(12):1805-1809. PubMed ID: 24890918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific incorporation of a fluorescent terphenyl unnatural amino acid.
    Lampkowski JS; Uthappa DM; Young DD
    Bioorg Med Chem Lett; 2015 Nov; 25(22):5277-80. PubMed ID: 26421994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings.
    Lacey VK; Louie GV; Noel JP; Wang L
    Chembiochem; 2013 Nov; 14(16):2100-5. PubMed ID: 24019075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases.
    Nadarajan SP; Mathew S; Deepankumar K; Yun H
    J Mol Graph Model; 2013 Feb; 39():79-86. PubMed ID: 23228618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
    Kwok HS; Vargas-Rodriguez O; Melnikov SV; Söll D
    ACS Chem Biol; 2019 Apr; 14(4):603-612. PubMed ID: 30933556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction.
    Zhao H; Ding W; Zang J; Yang Y; Liu C; Hu L; Chen Y; Liu G; Fang Y; Yuan Y; Lin S
    Nat Commun; 2021 Dec; 12(1):7039. PubMed ID: 34857769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes.
    Tawfik DS; Gruic-Sovulj I
    FEBS J; 2020 Apr; 287(7):1284-1305. PubMed ID: 31891445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Incorporation of Clickable Unnatural Amino Acids Enables Rapid and Biocompatible Labeling of Proteins in Vitro and in Bacteria.
    Hadar D; Gelkop S; Vaserman L; Amiram M
    Chembiochem; 2021 Apr; 22(8):1379-1384. PubMed ID: 33350556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity.
    Stokes AL; Miyake-Stoner SJ; Peeler JC; Nguyen DP; Hammer RP; Mehl RA
    Mol Biosyst; 2009 Sep; 5(9):1032-8. PubMed ID: 19668869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Xiao H; Schultz PG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of polyspecificity of the endogenous tRNA synthetase of different expression host towards photocrosslinking amino acids using an in silico approach.
    Prabhu NS; Yun H
    J Mol Graph Model; 2017 Aug; 75():375-382. PubMed ID: 28641210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids.
    Takimoto JK; Dellas N; Noel JP; Wang L
    ACS Chem Biol; 2011 Jul; 6(7):733-43. PubMed ID: 21545173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.