These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22042376)
21. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV; Onufriev AV; Aguilar B; Sulimov VB J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081 [TBL] [Abstract][Full Text] [Related]
22. Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches. Kolář M; Fanfrlík J; Lepšík M; Forti F; Luque FJ; Hobza P J Phys Chem B; 2013 May; 117(19):5950-62. PubMed ID: 23600402 [TBL] [Abstract][Full Text] [Related]
23. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling. Luchko T; Blinov N; Limon GC; Joyce KP; Kovalenko A J Comput Aided Mol Des; 2016 Nov; 30(11):1115-1127. PubMed ID: 27585474 [TBL] [Abstract][Full Text] [Related]
25. Solvation: how to obtain microscopic energies from partitioning and solvation experiments. Chan HS; Dill KA Annu Rev Biophys Biomol Struct; 1997; 26():425-59. PubMed ID: 9241426 [TBL] [Abstract][Full Text] [Related]
26. Stretching effects on the permeability of water molecules across a lipid bilayer. Gauthier A; Joós B J Chem Phys; 2007 Sep; 127(10):105104. PubMed ID: 17867783 [TBL] [Abstract][Full Text] [Related]
27. An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers. Tejwani RW; Davis ME; Anderson BD; Stouch TR Mol Pharm; 2011 Dec; 8(6):2204-15. PubMed ID: 21988564 [TBL] [Abstract][Full Text] [Related]
28. Computation of brain-blood partitioning of organic solutes via free energy calculations. Lombardo F; Blake JF; Curatolo WJ J Med Chem; 1996 Nov; 39(24):4750-5. PubMed ID: 8941388 [TBL] [Abstract][Full Text] [Related]
29. Functional group dependence of solute partitioning to various locations within a DOPC bilayer: a comparison of molecular dynamics simulations with experiment. Tejwani RW; Davis ME; Anderson BD; Stouch TR J Pharm Sci; 2011 Jun; 100(6):2136-46. PubMed ID: 21491439 [TBL] [Abstract][Full Text] [Related]
30. Structure, solubility, and permeability relationships in a diverse middle molecule library. Miyachi H; Kanamitsu K; Ishii M; Watanabe E; Katsuyama A; Otsuguro S; Yakushiji F; Watanabe M; Matsui K; Sato Y; Shuto S; Tadokoro T; Kita S; Matsumaru T; Matsuda A; Hirose T; Iwatsuki M; Shigeta Y; Nagano T; Kojima H; Ichikawa S; Sunazuka T; Maenaka K Bioorg Med Chem Lett; 2021 Apr; 37():127847. PubMed ID: 33571648 [TBL] [Abstract][Full Text] [Related]
31. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor. Williams RL; Vila J; Perrot G; Scheraga HA Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032 [TBL] [Abstract][Full Text] [Related]
33. An atomistic model of passive membrane permeability: application to a series of FDA approved drugs. Kalyanaraman C; Jacobson MP J Comput Aided Mol Des; 2007 Dec; 21(12):675-9. PubMed ID: 17989930 [TBL] [Abstract][Full Text] [Related]
34. Permeability of a Fluid Lipid Bilayer to Short-Chain Alcohols from First Principles. Comer J; Schulten K; Chipot C J Chem Theory Comput; 2017 Jun; 13(6):2523-2532. PubMed ID: 28475319 [TBL] [Abstract][Full Text] [Related]
35. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Lomize AL; Pogozheva ID J Chem Inf Model; 2019 Jul; 59(7):3198-3213. PubMed ID: 31259555 [TBL] [Abstract][Full Text] [Related]
36. Modeling aqueous solvation with semi-explicit assembly. Fennell CJ; Kehoe CW; Dill KA Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3234-9. PubMed ID: 21300905 [TBL] [Abstract][Full Text] [Related]
37. Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level. Wang M; Li P; Jia X; Liu W; Shao Y; Hu W; Zheng J; Brooks BR; Mei Y J Chem Inf Model; 2017 Oct; 57(10):2476-2489. PubMed ID: 28933850 [TBL] [Abstract][Full Text] [Related]
38. Prediction of Passive Membrane Permeability by Semi-Empirical Method Considering Viscous and Inertial Resistances and Different Rates of Conformational Change and Diffusion. Fukunishi Y; Mashimo T; Kurosawa T; Wakabayashi Y; Nakamura HK; Takeuchi K Mol Inform; 2020 Jan; 39(1-2):e1900071. PubMed ID: 31609549 [TBL] [Abstract][Full Text] [Related]
39. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride. Xiang TX; Anderson BD J Pharm Sci; 2006 Jun; 95(6):1269-87. PubMed ID: 16625657 [TBL] [Abstract][Full Text] [Related]
40. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG J Comput Aided Mol Des; 2010 Apr; 24(4):317-33. PubMed ID: 20358259 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]