BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22042496)

  • 1. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer.
    Arai T; Tajima S; Sato S; Uemura K; Morikawa T; Kajino T
    Chem Commun (Camb); 2011 Dec; 47(47):12664-6. PubMed ID: 22042496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts.
    Sato S; Arai T; Morikawa T; Uemura K; Suzuki TM; Tanaka H; Kajino T
    J Am Chem Soc; 2011 Oct; 133(39):15240-3. PubMed ID: 21899327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrochemical reduction of CO(2) in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex.
    Arai T; Sato S; Uemura K; Morikawa T; Kajino T; Motohiro T
    Chem Commun (Camb); 2010 Oct; 46(37):6944-6. PubMed ID: 20730225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.
    Yu X; Shavel A; An X; Luo Z; Ibáñez M; Cabot A
    J Am Chem Soc; 2014 Jul; 136(26):9236-9. PubMed ID: 24946131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu
    Zhang Y; Zhou S; Sun K
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical Reduction of CO
    Sahara G; Kumagai H; Maeda K; Kaeffer N; Artero V; Higashi M; Abe R; Ishitani O
    J Am Chem Soc; 2016 Oct; 138(42):14152-14158. PubMed ID: 27690409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO
    Zhou S; Sun K; Huang J; Lu X; Xie B; Zhang D; Hart JN; Toe CY; Hao X; Amal R
    Small; 2021 Aug; 17(31):e2100496. PubMed ID: 34173332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications.
    Nagoya A; Asahi R; Kresse G
    J Phys Condens Matter; 2011 Oct; 23(40):404203. PubMed ID: 21931185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2009 Sep; 131(34):12054-5. PubMed ID: 19673478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts.
    Ikeda S; Nakamura T; Harada T; Matsumura M
    Phys Chem Chem Phys; 2010 Nov; 12(42):13943-9. PubMed ID: 20852813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.
    Jiang F; Gunawan ; Harada T; Kuang Y; Minegishi T; Domen K; Ikeda S
    J Am Chem Soc; 2015 Oct; 137(42):13691-7. PubMed ID: 26479423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells.
    Ramasamy K; Malik MA; O'Brien P
    Chem Commun (Camb); 2012 Jun; 48(46):5703-14. PubMed ID: 22531115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid photocathode consisting of a CuGaO
    Kumagai H; Sahara G; Maeda K; Higashi M; Abe R; Ishitani O
    Chem Sci; 2017 Jun; 8(6):4242-4249. PubMed ID: 29081960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented Z scheme blueprint for efficient solar water splitting system using quaternary chalcogenide absorber material.
    Sarswat PK; Bhattacharyya D; Free ML; Misra M
    Phys Chem Chem Phys; 2016 Feb; 18(5):3788-803. PubMed ID: 26762553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical CO
    Kamata R; Kumagai H; Yamazaki Y; Sahara G; Ishitani O
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5632-5641. PubMed ID: 29920063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct assembly synthesis of metal complex-semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction.
    Suzuki TM; Tanaka H; Morikawa T; Iwaki M; Sato S; Saeki S; Inoue M; Kajino T; Motohiro T
    Chem Commun (Camb); 2011 Aug; 47(30):8673-5. PubMed ID: 21713249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode.
    Sahara G; Abe R; Higashi M; Morikawa T; Maeda K; Ueda Y; Ishitani O
    Chem Commun (Camb); 2015 Jul; 51(53):10722-5. PubMed ID: 26051138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facet-dependent CO
    Zhang R; Wen X; Peng H; Xia Y; Xu F; Sun L
    Phys Chem Chem Phys; 2021 Dec; 24(1):48-55. PubMed ID: 34580699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Cu
    Zhang H; Zhou C; Zeng H; Deng L; Shi Z
    J Hazard Mater; 2020 Aug; 395():122613. PubMed ID: 32330779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics.
    Wang J; Xin X; Lin Z
    Nanoscale; 2011 Aug; 3(8):3040-8. PubMed ID: 21713274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.