These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22042496)

  • 21. The consequences of kesterite equilibria for efficient solar cells.
    Redinger A; Berg DM; Dale PJ; Siebentritt S
    J Am Chem Soc; 2011 Mar; 133(10):3320-3. PubMed ID: 21329385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor.
    Sato S; Morikawa T; Saeki S; Kajino T; Motohiro T
    Angew Chem Int Ed Engl; 2010 Jul; 49(30):5101-5. PubMed ID: 20607873
    [No Abstract]   [Full Text] [Related]  

  • 23. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells.
    Guo Q; Hillhouse HW; Agrawal R
    J Am Chem Soc; 2009 Aug; 131(33):11672-3. PubMed ID: 19722591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells.
    Fairbrother A; García-Hemme E; Izquierdo-Roca V; Fontané X; Pulgarín-Agudelo FA; Vigil-Galán O; Pérez-Rodríguez A; Saucedo E
    J Am Chem Soc; 2012 May; 134(19):8018-21. PubMed ID: 22545682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics.
    Steinhagen C; Panthani MG; Akhavan V; Goodfellow B; Koo B; Korgel BA
    J Am Chem Soc; 2009 Sep; 131(35):12554-5. PubMed ID: 19685876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2011 Oct; 133(39):15272-5. PubMed ID: 21882872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solar-driven CO
    Arai T; Sato S; Sekizawa K; Suzuki TM; Morikawa T
    Chem Commun (Camb); 2018 Dec; 55(2):237-240. PubMed ID: 30525139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell.
    Barton EE; Rampulla DM; Bocarsly AB
    J Am Chem Soc; 2008 May; 130(20):6342-4. PubMed ID: 18439010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4.
    Zhong DK; Choi S; Gamelin DR
    J Am Chem Soc; 2011 Nov; 133(45):18370-7. PubMed ID: 21942320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low temperature phase selective synthesis of Cu(2)ZnSnS(4) quantum dots.
    Cattley CA; Cheng C; Fairclough SM; Droessler LM; Young NP; Warner JH; Smith JM; Assender HE; Watt AA
    Chem Commun (Camb); 2013 May; 49(36):3745-7. PubMed ID: 23535863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nitrogen and intrinsic defect complexes on conversion efficiency of ZnO for hydrogen generation from water.
    Lu YH; Russo SP; Feng YP
    Phys Chem Chem Phys; 2011 Sep; 13(35):15973-6. PubMed ID: 21811735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation.
    Tran PD; Pramana SS; Kale VS; Nguyen M; Chiam SY; Batabyal SK; Wong LH; Barber J; Loo J
    Chemistry; 2012 Oct; 18(44):13994-9. PubMed ID: 23008230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aqueous-solution route to zinc telluride films for application to CO₂ reduction.
    Jang JW; Cho S; Magesh G; Jang YJ; Kim JY; Kim WY; Seo JK; Kim S; Lee KH; Lee JS
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5852-7. PubMed ID: 24740478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a heterobimetallic Ru(II)-Cu(II) complex for highly selective and sensitive luminescence sensing of sulfide anions.
    Zhang R; Yu X; Yin Y; Ye Z; Wang G; Yuan J
    Anal Chim Acta; 2011 Apr; 691(1-2):83-8. PubMed ID: 21458635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticles of amorphous ruthenium sulfide easily obtainable from a TiO2-supported hexanuclear cluster complex [Ru6C(CO)16]2-: a highly active catalyst for the reduction of SO2 with H2.
    Ishiguro A; Nakajima T; Iwata T; Fujita M; Minato T; Kiyotaki F; Izumi Y; Aika K; Uchida M; Kimoto K; Matsui Y; Wakatsuki Y
    Chemistry; 2002 Jul; 8(14):3260-8. PubMed ID: 12203357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoelectrochemical oxidation of DNA by ruthenium tris(bipyridine) on a tin oxide nanoparticle electrode.
    Liang M; Liu S; Wei M; Guo LH
    Anal Chem; 2006 Jan; 78(2):621-3. PubMed ID: 16408949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source.
    Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S
    Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO(2) films.
    Nogueira AF; Formiga AL; Winnischofer H; Nakamura M; Engelmann FM; Araki K; Toma HE
    Photochem Photobiol Sci; 2004 Jan; 3(1):56-62. PubMed ID: 14743280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size control and quantum confinement in Cu2ZnSnS4 nanocrystals.
    Khare A; Wills AW; Ammerman LM; Norris DJ; Aydil ES
    Chem Commun (Camb); 2011 Nov; 47(42):11721-3. PubMed ID: 21952415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.