These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22042496)

  • 41. Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][M(II)(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium).
    Hu KL; Kurmoo M; Wang Z; Gao S
    Chemistry; 2009 Nov; 15(44):12050-64. PubMed ID: 19774570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene.
    Liu M; Yu W; Liu H; Zheng J
    J Colloid Interface Sci; 1999 Jun; 214(2):231-237. PubMed ID: 10339363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photocatalytic reduction of CO2 over Cu-TiO2 /molecular sieve 5A composite.
    Srinivas B; Shubhamangala B; Lalitha K; Reddy PA; Kumari VD; Subrahmanyam M; De BR
    Photochem Photobiol; 2011; 87(5):995-1001. PubMed ID: 21623797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper.
    Baghel A; Boopathi M; Singh B; Pandey P; Mahato TH; Gutch PK; Sekhar K
    Biosens Bioelectron; 2007 Jun; 22(12):3326-34. PubMed ID: 17350247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly loaded and thermally stable Cu-containing mesoporous silica-active catalyst for the NO + CO reaction.
    Pantazis CC; Trikalitis PN; Pomonis PJ
    J Phys Chem B; 2005 Jun; 109(25):12574-81. PubMed ID: 16852555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis.
    Wang GL; Xu JJ; Chen HY
    Nanoscale; 2010 Jul; 2(7):1112-4. PubMed ID: 20648335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ce-doped ZnO (Ce(x)Zn(1-x)O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting.
    Anandan S; Miyauchi M
    Phys Chem Chem Phys; 2011 Sep; 13(33):14937-45. PubMed ID: 21761055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly efficient and selective epoxidation of alkenes by photochemical oxygenation sensitized by a ruthenium(II) porphyrin with water as both electron and oxygen donor.
    Funyu S; Isobe T; Takagi S; Tryk DA; Inoue H
    J Am Chem Soc; 2003 May; 125(19):5734-40. PubMed ID: 12733912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells.
    Son EJ; Ko JW; Kuk SK; Choe H; Lee S; Kim JH; Nam DH; Ryu GM; Kim YH; Park CB
    Chem Commun (Camb); 2016 Aug; 52(62):9723-6. PubMed ID: 27411734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cu(2)ZnSnS(4) nanocrystal dispersions in polar liquids.
    Tosun BS; Chernomordik BD; Gunawan AA; Williams B; Mkhoyan KA; Francis LF; Aydil ES
    Chem Commun (Camb); 2013 May; 49(34):3549-51. PubMed ID: 23519191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduction of CO2 on a tricarbonyl rhenium(I) complex: modeling a catalytic cycle.
    Agarwal J; Johnson RP; Li G
    J Phys Chem A; 2011 Apr; 115(13):2877-81. PubMed ID: 21410231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM.
    Sreekanth N; Phani KL
    Chem Commun (Camb); 2014 Oct; 50(76):11143-6. PubMed ID: 25109460
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensitization of TiO(2) by supramolecules containing zinc porphyrins and ruthenium-polypyridyl complexes.
    Nogueira AF; Furtado LF; Formiga AL; Nakamura M; Araki K; Toma HE
    Inorg Chem; 2004 Jan; 43(2):396-8. PubMed ID: 14730997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine.
    Zare HR; Hashemi SH; Benvidi A
    Anal Chim Acta; 2010 Jun; 668(2):182-7. PubMed ID: 20493296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid junctions of zinc(II) and magnesium(II) phthalocyanine with wide-band-gap semiconductor nano-oxides: spectroscopic and photoelectrochemical characterization.
    Ingrosso C; Petrella A; Cosma P; Curri ML; Striccoli M; Agostiano A
    J Phys Chem B; 2006 Dec; 110(48):24424-32. PubMed ID: 17134197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen-evolving solar cells.
    Heller A
    Science; 1984 Mar; 223(4641):1141-8. PubMed ID: 17742920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solar driven water oxidation by a bioinspired manganese molecular catalyst.
    Brimblecombe R; Koo A; Dismukes GC; Swiegers GF; Spiccia L
    J Am Chem Soc; 2010 Mar; 132(9):2892-4. PubMed ID: 20155923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel.
    Kang J; Zhang S; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical and photochemical oxidation of organic substrates by ruthenium aqua complexes with water as an oxygen source.
    Li F; Yu M; Jiang Y; Huang F; Li Y; Zhang B; Sun L
    Chem Commun (Camb); 2011 Aug; 47(31):8949-51. PubMed ID: 21738912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Directing the reactivity of [HFe4N(CO)12]- toward H+ or CO2 reduction by understanding the electrocatalytic mechanism.
    Rail MD; Berben LA
    J Am Chem Soc; 2011 Nov; 133(46):18577-9. PubMed ID: 22032761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.