BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22042578)

  • 41. Rate and effects of spontaneous mutations that affect fitness in mutator Escherichia coli.
    Trindade S; Perfeito L; Gordo I
    Philos Trans R Soc Lond B Biol Sci; 2010 Apr; 365(1544):1177-86. PubMed ID: 20308092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epistasis and frequency dependence influence the fitness of an adaptive mutation in a diversifying lineage.
    Le Gac M; Doebeli M
    Mol Ecol; 2010 Jun; 19(12):2430-8. PubMed ID: 20497320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
    Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G
    J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Beneficial Mutations in pykF Gene Vary over Time and across Replicate Populations in a Long-Term Experiment with Bacteria.
    Peng F; Widmann S; Wünsche A; Duan K; Donovan KA; Dobson RCJ; Lenski RE; Cooper TF
    Mol Biol Evol; 2018 Jan; 35(1):202-210. PubMed ID: 29069429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli.
    Applebee MK; Herrgård MJ; Palsson BØ
    J Bacteriol; 2008 Jul; 190(14):5087-94. PubMed ID: 18487343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolutionary footprint of epistasis.
    Pedruzzi G; Barlukova A; Rouzine IM
    PLoS Comput Biol; 2018 Sep; 14(9):e1006426. PubMed ID: 30222748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Higher-fitness yeast genotypes are less robust to deleterious mutations.
    Johnson MS; Martsul A; Kryazhimskiy S; Desai MM
    Science; 2019 Oct; 366(6464):490-493. PubMed ID: 31649199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detecting epistasis from an ensemble of adapting populations.
    McCandlish DM; Otwinowski J; Plotkin JB
    Evolution; 2015 Sep; 69(9):2359-70. PubMed ID: 26194030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli.
    Plucain J; Hindré T; Le Gac M; Tenaillon O; Cruveiller S; Médigue C; Leiby N; Harcombe WR; Marx CJ; Lenski RE; Schneider D
    Science; 2014 Mar; 343(6177):1366-9. PubMed ID: 24603152
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative trait locus mapping of genes under selection across multiple years and sites in Avena barbata: epistasis, pleiotropy, and genotype-by-environment interactions.
    Latta RG; Gardner KM; Staples DA
    Genetics; 2010 May; 185(1):375-85. PubMed ID: 20194964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Error-threshold exists in fitness landscapes with lethal mutants.
    Takeuchi N; Hogeweg P
    BMC Evol Biol; 2007 Feb; 7():15; author reply 15. PubMed ID: 17286853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation.
    Gros PA; Le Nagard H; Tenaillon O
    Genetics; 2009 May; 182(1):277-93. PubMed ID: 19279327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bistability in two-locus models with selection, mutation, and recombination.
    Park SC; Krug J
    J Math Biol; 2011 May; 62(5):763-88. PubMed ID: 20617437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-term adaptation of epistatic genetic networks.
    Yukilevich R; Lachance J; Aoki F; True JR
    Evolution; 2008 Sep; 62(9):2215-35. PubMed ID: 18564374
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hamilton׳s Rule in finite populations with synergistic interactions.
    Taylor P
    J Theor Biol; 2016 May; 397():151-7. PubMed ID: 26947271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environment changes epistasis to alter trade-offs along alternative evolutionary paths.
    Hall AE; Karkare K; Cooper VS; Bank C; Cooper TF; Moore FB
    Evolution; 2019 Oct; 73(10):2094-2105. PubMed ID: 31418459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus.
    Lee MC; Marx CJ
    Genetics; 2013 Mar; 193(3):943-52. PubMed ID: 23307898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field.
    Kerwin RE; Feusier J; Muok A; Lin C; Larson B; Copeland D; Corwin JA; Rubin MJ; Francisco M; Li B; Joseph B; Weinig C; Kliebenstein DJ
    New Phytol; 2017 Aug; 215(3):1249-1263. PubMed ID: 28608555
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rank orders and signed interactions in evolutionary biology.
    Crona K
    Elife; 2020 Jan; 9():. PubMed ID: 31934856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.