BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22042624)

  • 1. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.
    Salek MM; Sattari P; Martinuzzi RJ
    Ann Biomed Eng; 2012 Mar; 40(3):707-28. PubMed ID: 22042624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels.
    Kostenko V; Salek MM; Sattari P; Martinuzzi RJ
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):421-31. PubMed ID: 20528928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.
    Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL
    Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal resolution of shear in an orbiting petri dish.
    Thomas JM; Chakraborty A; Sharp MK; Berson RE
    Biotechnol Prog; 2011; 27(2):460-5. PubMed ID: 21302366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential effect of geometry on wall shear stress distribution across scaffold surfaces.
    Gutierrez RA; Crumpler ET
    Ann Biomed Eng; 2008 Jan; 36(1):77-85. PubMed ID: 17963042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Martinez DM; Taghipour F; Bowen BD; Haynes CA
    Biotechnol Bioeng; 2006 Dec; 95(6):1207-17. PubMed ID: 16937405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].
    Xiao Z; Zhang B; Zhang E; Xu W; Shi Y; Guo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):157-62. PubMed ID: 21485205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.
    Salek MM; Jones SM; Martinuzzi RJ
    Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement and validation of a computational model of flow in the swirling well cell culture model.
    Arshad M; Rowland EM; Riemer K; Sherwin SJ; Weinberg PD
    Biotechnol Bioeng; 2022 Jan; 119(1):72-88. PubMed ID: 34612513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates.
    Abbas F; Sudarsan R; Eberl HJ
    Math Biosci Eng; 2012 Apr; 9(2):215-39. PubMed ID: 22901062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of adhesive behavior of neutrophils on local fluid dynamics in a region with recirculating flow.
    Skilbeck C; Westwood SM; Walker PG; David T; Nash GB
    Biorheology; 2001; 38(2-3):213-27. PubMed ID: 11381176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of orbital and laminar shear stress on endothelial cells.
    Dardik A; Chen L; Frattini J; Asada H; Aziz F; Kudo FA; Sumpio BE
    J Vasc Surg; 2005 May; 41(5):869-80. PubMed ID: 15886673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro.
    Estrada R; Giridharan GA; Nguyen MD; Roussel TJ; Shakeri M; Parichehreh V; Prabhu SD; Sethu P
    Anal Chem; 2011 Apr; 83(8):3170-7. PubMed ID: 21413699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress.
    Park JY; Yoo SJ; Patel L; Lee SH; Lee SH
    Biorheology; 2010; 47(3-4):165-78. PubMed ID: 21084742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rational utilization of a silicone tube flow chamber system].
    Wu H; Xu Z; Qin K; Joji A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1061-4. PubMed ID: 18027697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.