These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 22042680)
21. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study. Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505 [TBL] [Abstract][Full Text] [Related]
22. Directed immobilization of protein-coated nanospheres to nanometer-scale patterns fabricated by electron beam lithography of poly(ethylene glycol) self-assembled monolayers. Rundqvist J; Hoh JH; Haviland DB Langmuir; 2006 May; 22(11):5100-7. PubMed ID: 16700600 [TBL] [Abstract][Full Text] [Related]
23. Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. Gole A; Orendorff CJ; Murphy CJ Langmuir; 2004 Aug; 20(17):7117-22. PubMed ID: 15301495 [TBL] [Abstract][Full Text] [Related]
24. Immobilisation of living bacteria for AFM imaging under physiological conditions. Louise Meyer R; Zhou X; Tang L; Arpanaei A; Kingshott P; Besenbacher F Ultramicroscopy; 2010 Oct; 110(11):1349-57. PubMed ID: 20619542 [TBL] [Abstract][Full Text] [Related]
25. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Wagner P; Hegner M; Kernen P; Zaugg F; Semenza G Biophys J; 1996 May; 70(5):2052-66. PubMed ID: 9172730 [TBL] [Abstract][Full Text] [Related]
26. Covalent immobilization of protein onto a functionalized hydrogenated diamond-like carbon substrate. Biswas HS; Datta J; Chowdhury DP; Reddy AV; Ghosh UC; Srivastava AK; Ray NR Langmuir; 2010 Nov; 26(22):17413-8. PubMed ID: 20949913 [TBL] [Abstract][Full Text] [Related]
27. Mixed-SAM surfaces monitoring CTX-protein part I: Using atomic force microscope measurements. Chang JM; Tseng FG; Chieng CC IEEE Trans Nanobioscience; 2010 Dec; 9(4):289-96. PubMed ID: 20840906 [TBL] [Abstract][Full Text] [Related]
28. [Surface enhanced Raman spectroscopic study on the gold-labeled protein self-assembled surface]. Chao KF; Zhang YL; Kong XG; Feng LY; Li B; Zeng QH; Song K; Sun YJ Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1757-60. PubMed ID: 18051523 [TBL] [Abstract][Full Text] [Related]
29. Ambient STM and in situ AFM study of nitrite reductase proteins adsorbed on gold and graphite: influence of the substrate on protein interactions. Contera SA; Iwasaki H; Suzuki S Ultramicroscopy; 2003; 97(1-4):65-72. PubMed ID: 12801658 [TBL] [Abstract][Full Text] [Related]
30. Atomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors. Cecchet F; Duwez AS; Gabriel S; Jérôme C; Jérôme R; Glinel K; Demoustier-Champagne S; Jonas AM; Nysten B Anal Chem; 2007 Sep; 79(17):6488-95. PubMed ID: 17676815 [TBL] [Abstract][Full Text] [Related]
31. Size measurement of nanoparticles using atomic force microscopy. Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955 [TBL] [Abstract][Full Text] [Related]
32. [Characterization and applications of self-assembled lipid films: atomic force microscopy studies]. Deng S; Cai J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):472-5. PubMed ID: 18610645 [TBL] [Abstract][Full Text] [Related]
33. Antibody-mediated self-limiting self-assembly for quantitative analysis of nanoparticle surfaces by atomic force microscopy. Geronimo CL; MacCuspie RI Microsc Microanal; 2011 Apr; 17(2):206-14. PubMed ID: 21366936 [TBL] [Abstract][Full Text] [Related]
34. [Progress in the studies of DNA-protein interactions by atomic force microscopy]. Wang Y; Liao W; Cai J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1172-6. PubMed ID: 18027720 [TBL] [Abstract][Full Text] [Related]
35. Nanoscale in situ morphological study of proteins immobilized on gold thin films. Scaramuzzo FA; Salvati R; Paci B; Generosi A; Rossi-Albertini V; Latini A; Barteri M J Phys Chem B; 2009 Dec; 113(48):15895-9. PubMed ID: 19899801 [TBL] [Abstract][Full Text] [Related]
36. Visualization of mobility by atomic force microscopy. Ando T; Kodera N Methods Mol Biol; 2012; 896():57-69. PubMed ID: 22821517 [TBL] [Abstract][Full Text] [Related]
37. Atomic force microscopy: a tool for studying biophysical surface properties underpinning fungal interactions with plants and substrates. Adams E; Emerson D; Croker S; Kim HS; Modla S; Kang S; Czymmek K Methods Mol Biol; 2012; 835():151-64. PubMed ID: 22183653 [TBL] [Abstract][Full Text] [Related]
38. Quantification of E. coli adhesion to polyamides and polystyrene with atomic force microscopy. Thio BJ; Meredith JC Colloids Surf B Biointerfaces; 2008 Sep; 65(2):308-12. PubMed ID: 18585011 [TBL] [Abstract][Full Text] [Related]
39. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
40. Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy. Bunker M; Zhang J; Blanchard R; Roberts CJ Drug Dev Ind Pharm; 2011 Aug; 37(8):875-85. PubMed ID: 21247374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]