BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22042683)

  • 1. Novel strategies to engineering biological tissue in vitro.
    Urciuolo F; Imparato G; Guaccio A; Mele B; Netti PA
    Methods Mol Biol; 2012; 811():223-44. PubMed ID: 22042683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences.
    Guaccio A; Guarino V; Perez MA; Cirillo V; Netti PA; Ambrosio L
    Biotechnol Bioeng; 2011 Aug; 108(8):1965-76. PubMed ID: 21351071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low oxygen concentrations impair tissue development in tissue-engineered cardiovascular constructs.
    van Vlimmeren MA; Driessen-Mol A; Oomens CW; van den Broek M; Stoop R; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2012 Feb; 18(3-4):221-31. PubMed ID: 21902601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering technologies: just a quick note about transplantation of bioengineered donor trachea and augmentation cystoplasty by de novo engineered bladder tissue.
    Alberti C
    G Chir; 2009; 30(11-12):514-9. PubMed ID: 20109384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreactor for biaxial mechanical stimulation to tissue engineered constructs.
    Wartella KA; Wayne JS
    J Biomech Eng; 2009 Apr; 131(4):044501. PubMed ID: 19275443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of bioreactors in maxillofacial tissue engineering.
    Depprich R; Handschel J; Wiesmann HP; Jäsche-Meyer J; Meyer U
    Br J Oral Maxillofac Surg; 2008 Jul; 46(5):349-54. PubMed ID: 18343545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Numerical simulation of chondrocyte growth in 3-D scaffolds].
    Jiang H; Zhou Y; Tan WS
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):171-5. PubMed ID: 17366909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering.
    El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P
    J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design criteria for a printed tissue engineering construct: a mathematical homogenization approach.
    Shipley RJ; Jones GW; Dyson RJ; Sengers BG; Bailey CL; Catt CJ; Please CP; Malda J
    J Theor Biol; 2009 Aug; 259(3):489-502. PubMed ID: 19361531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads.
    Luo H; Chen M; Wang X; Mei Y; Ye Z; Zhou Y; Tan WS
    J Tissue Eng Regen Med; 2014 Jun; 8(6):493-504. PubMed ID: 22761157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of process conditions on the growth of three-dimensional dermal-equivalent tissue obtained by microtissue precursor assembly.
    Urciuolo F; Imparato G; Palmiero C; Trilli A; Netti PA
    Tissue Eng Part C Methods; 2011 Feb; 17(2):155-64. PubMed ID: 20704470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building a tissue in vitro from the bottom up: implications in regenerative medicine.
    Urciuolo F; Imparato G; Totaro A; Netti PA
    Methodist Debakey Cardiovasc J; 2013; 9(4):213-7. PubMed ID: 24298313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering.
    Lu T; Li Y; Chen T
    Int J Nanomedicine; 2013; 8():337-50. PubMed ID: 23345979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage.
    Schon BS; Hooper GJ; Woodfield TB
    Ann Biomed Eng; 2017 Jan; 45(1):100-114. PubMed ID: 27073109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D sample preparation for orthopaedic tissue engineering bioreactors.
    Cartmell SH; Rathbone S; Jones G; Hidalgo-Bastida LA
    Methods Mol Biol; 2011; 695():61-76. PubMed ID: 21042966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreactor systems for bone tissue engineering.
    Rauh J; Milan F; Günther KP; Stiehler M
    Tissue Eng Part B Rev; 2011 Aug; 17(4):263-80. PubMed ID: 21495897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.