These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22042986)

  • 1. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localizing a gate in CFTR.
    Gao X; Hwang TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).
    Wang W; Linsdell P
    J Biol Chem; 2012 Mar; 287(13):10156-10165. PubMed ID: 22303012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
    Corradi V; Vergani P; Tieleman DP
    J Biol Chem; 2015 Sep; 290(38):22891-906. PubMed ID: 26229102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2014 Oct; 289(41):28149-59. PubMed ID: 25143385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.
    El Hiani Y; Negoda A; Linsdell P
    Cell Mol Life Sci; 2016 May; 73(9):1917-25. PubMed ID: 26659082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway.
    Gao X; Hwang TC
    J Gen Physiol; 2016 May; 147(5):407-22. PubMed ID: 27114613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.