These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22043457)

  • 1. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process.
    Bora T; Kyaw HH; Sarkar S; Pal SK; Dutta J
    Beilstein J Nanotechnol; 2011; 2():681-90. PubMed ID: 22043457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells.
    Lou Y; Yuan S; Zhao Y; Hu P; Wang Z; Zhang M; Shi L; Li D
    Dalton Trans; 2013 Apr; 42(15):5330-7. PubMed ID: 23407603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.
    Abd-Ellah M; Moghimi N; Zhang L; Thomas JP; McGillivray D; Srivastava S; Leung KT
    Nanoscale; 2016 Jan; 8(3):1658-64. PubMed ID: 26690257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoselective excited state dynamics in ZnO-Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells.
    Sarkar S; Makhal A; Bora T; Baruah S; Dutta J; Pal SK
    Phys Chem Chem Phys; 2011 Jul; 13(27):12488-96. PubMed ID: 21660322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods.
    Chandrasekhar PS; Parashar PK; Swami SK; Dutta V; Komarala VK
    Phys Chem Chem Phys; 2018 Apr; 20(14):9651-9658. PubMed ID: 29582021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold-silver@TiO
    Lim SP; Lim YS; Pandikumar A; Lim HN; Ng YH; Ramaraj R; Bien DC; Abou-Zied OK; Huang NM
    Phys Chem Chem Phys; 2017 Jan; 19(2):1395-1407. PubMed ID: 27976767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-Dependent Localized Surface Plasma Resonance of Au Nanoparticles in Au/ZnO Photoanodes for Dye-Sensitized Solar Cells.
    Chang WC; Wan-Chin Y; Lin LY; Yu YJ; Peng YM
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2431-437. PubMed ID: 29648742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eosin-Y sensitized core-shell TiO
    Manikandan VS; Palai AK; Mohanty S; Nayak SK
    J Photochem Photobiol B; 2018 Jun; 183():397-404. PubMed ID: 29778020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fence Constructed at a Semiconductor/Electrolyte Interface Improving the Electron Collection Efficiency of the Photoelectrode for a Dye-Sensitized Solar Cell.
    Liu H; Lou Y; Jungsuttiwong S; Yuan S; Zhao Y; Wang Z; Shi L; Zhou H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2396-2402. PubMed ID: 28033702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Energy Band Bending in ZnO Nanorods Decorated with Au Nanoparticles.
    Bruno L; Strano V; Scuderi M; Franzò G; Priolo F; Mirabella S
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles.
    Roy A; Das PP; Tathavadekar M; Das S; Devi PS
    Beilstein J Nanotechnol; 2017; 8():210-221. PubMed ID: 28243559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic photocatalytic activity of ZnO:Au nanostructures: Tailoring the plasmon absorption and interfacial charge transfer mechanism.
    Raji R; Gopchandran KG
    J Hazard Mater; 2019 Apr; 368():345-357. PubMed ID: 30685723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell thickness matters! Energy transfer and rectification study of Au/ZnO core/shell nanoparticles.
    Haldar KK; Sen T
    J Colloid Interface Sci; 2016 Dec; 484():263-269. PubMed ID: 27619386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing DSSC Performance through Manipulation of the Size of ZnO Nanorods.
    Lai FI; Yang JF; Hsu YC; Lin KJ; Kuo SY
    ACS Omega; 2023 Oct; 8(43):40206-40211. PubMed ID: 37929151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion.
    Barpuzary D; Patra AS; Vaghasiya JV; Solanki BG; Soni SS; Qureshi M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12629-39. PubMed ID: 25029665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of morphology and defect density in zinc oxide for improved dye-sensitized solar cells.
    Kim SA; Abbas MA; Lee L; Kang B; Kim H; Bang JH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30475-30483. PubMed ID: 27782242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells.
    Qiu J; Guo M; Wang X
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2358-67. PubMed ID: 21675757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic Implanted Plasmonic Photoanodes for TiO
    Kaur N; Bhullar V; Singh DP; Mahajan A
    Sci Rep; 2020 May; 10(1):7657. PubMed ID: 32376842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.