BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2204422)

  • 1. Spectral perturbations and oligomer/monomer formation in 124-kilodalton Avena phytochrome.
    Choi JK; Kim IS; Kwon TI; Parker W; Song PS
    Biochemistry; 1990 Jul; 29(29):6883-91. PubMed ID: 2204422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic properties of phytochrome as probed by 8-anilinonaphthalene-1-sulfonate fluorescence.
    Hahn TR; Song PS
    Biochemistry; 1981 Apr; 20(9):2602-9. PubMed ID: 7236624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro.
    Lagarias JC; Mercurio FM
    J Biol Chem; 1985 Feb; 260(4):2415-23. PubMed ID: 3882693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A.
    Gärtner W; Hill C; Worm K; Braslavsky SE; Schaffner K
    Eur J Biochem; 1996 Mar; 236(3):978-83. PubMed ID: 8665921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide.
    Yamamoto KT
    Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular topography of phytochrome: chromophore and apoprotein.
    Song PS
    J Photochem Photobiol B; 1988 Jul; 2(1):43-57. PubMed ID: 3149301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of phytochrome to liposomes and protoplasts.
    Kim IS; Song PS
    Biochemistry; 1981 Sep; 20(19):5482-9. PubMed ID: 7295687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.
    Remberg A; Schmidt P; Braslavsky SE; Gärtner W; Schaffner K
    Eur J Biochem; 1999 Nov; 266(1):201-8. PubMed ID: 10542065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structures of the phytochrome chromophore in both photoreversible forms.
    Grombein S; Rüdiger W; Zimmermann H
    Hoppe Seylers Z Physiol Chem; 1975 Nov; 356(11):1709-14. PubMed ID: 1334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototransformation of pea phytochrome A induces an increase in alpha-helical folding of the apoprotein: comparison with a monocot phytochrome A and CD analysis by different methods.
    Deforce L; Tokutomi S; Song PS
    Biochemistry; 1994 Apr; 33(16):4918-22. PubMed ID: 8161552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal domain of Avena phytochrome: interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated phytochrome.
    Parker W; Partis M; Song PS
    Biochemistry; 1992 Oct; 31(39):9413-20. PubMed ID: 1390724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin.
    Hill C; Gärtner W; Towner P; Braslavsky SE; Schaffner K
    Eur J Biochem; 1994 Jul; 223(1):69-77. PubMed ID: 8033910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1.
    Park CM; Shim JY; Yang SS; Kang JG; Kim JI; Luka Z; Song PS
    Biochemistry; 2000 May; 39(21):6349-56. PubMed ID: 10828948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.