BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 2204425)

  • 1. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function.
    Sener A; Rasschaert J; Malaisse WJ
    Biochim Biophys Acta; 1990 Aug; 1019(1):42-50. PubMed ID: 2204425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexose metabolism in pancreatic islets. Feedback control of D-glucose oxidation by functional events.
    Malaisse WJ; Sener A
    Biochim Biophys Acta; 1988 Oct; 971(3):246-54. PubMed ID: 3139046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose metabolism in pancreatic islets. Regulation of D-[6-14C]glucose oxidation by non-nutrient secretagogues.
    Sener A; Malaisse WJ
    Mol Cell Endocrinol; 1991 Apr; 76(1-3):1-6. PubMed ID: 1820966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose metabolism in pancreatic islets. Glucose-induced and Ca(2+)-dependent activation of FAD-glycerophosphate dehydrogenase.
    Rasschaert J; Malaisse WJ
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):335-40. PubMed ID: 1898325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose metabolism in pancreatic islets. Activation of the Krebs cycle by nutrient secretagogues.
    Malaisse WJ; Sener A
    Mol Cell Biochem; 1991 Oct; 107(2):95-102. PubMed ID: 1791828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose metabolism in pancreatic islet cells: the coupling between hexose phosphorylation and mitochondrial respiration.
    Rasschaert J; Sener A; Malaisse WJ
    Biochem Med Metab Biol; 1990 Aug; 44(1):84-95. PubMed ID: 2202346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexose metabolism in pancreatic islets: preferential utilization of mitochondrial ATP for glucose phosphorylation.
    Rasschaert J; Malaisse WJ
    Biochim Biophys Acta; 1990 Feb; 1015(2):353-60. PubMed ID: 2404519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
    Civelek VN; Deeney JT; Shalosky NJ; Tornheim K; Hansford RG; Prentki M; Corkey BE
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of hexose transport, glycerol phosphate shuttle and Krebs cycle in islets of adult rats injected with streptozotocin during the neonatal period.
    Giroix MH; Rasschaert J; Sener A; Leclercq-Meyer V; Bailbe D; Portha B; Malaisse WJ
    Mol Cell Endocrinol; 1992 Feb; 83(2-3):95-104. PubMed ID: 1532153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by calcium ion and adenine nucleotides. Effects on S0.5 for alpha-ketoglutarate.
    Lawlis VB; Roche TE
    Biochemistry; 1981 Apr; 20(9):2512-8. PubMed ID: 7236617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT).
    Civelek VN; Deeney JT; Kubik K; Schultz V; Tornheim K; Corkey BE
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):1015-9. PubMed ID: 8645138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG; Bromidge ES; Dawes NJ
    Biochim Biophys Acta; 1988 Jul; 934(3):282-92. PubMed ID: 2840116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period.
    Giroix MH; Sener A; Bailbe D; Portha B; Malaisse WJ
    Diabetologia; 1990 Nov; 33(11):654-60. PubMed ID: 2150194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long term in vitro effects of streptozotocin, interleukin-1, and high glucose concentration on the activity of mitochondrial dehydrogenases and the secretion of insulin in pancreatic islets.
    Rasschaert J; Eizirik DL; Malaisse WJ
    Endocrinology; 1992 Jun; 130(6):3522-8. PubMed ID: 1534541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose metabolism in pancreatic islets. Regulation of NAD-isocitrate dehydrogenase activity.
    Rasschaert J; Malaisse WJ
    Biochem Med Metab Biol; 1992 Aug; 48(1):32-40. PubMed ID: 1524869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca2+ on oxidative phosphorylation in mitochondria from the thermogenic organ of marlin.
    O'Brien J; Block BA
    J Exp Biol; 1996 Dec; 199(Pt 12):2679-87. PubMed ID: 9110954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of glycerol phosphate shuttle in islets from rats with diabetes induced by neonatal streptozocin.
    Giroix MH; Rasschaert J; Bailbe D; Leclercq-Meyer V; Sener A; Portha B; Malaisse WJ
    Diabetes; 1991 Feb; 40(2):227-32. PubMed ID: 1825072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.
    Rutter GA; Denton RM
    Biochem J; 1988 May; 252(1):181-9. PubMed ID: 3421900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexose metabolism in pancreatic islets: regulation of the mitochondrial NADH/NAD+ ratio.
    Ramirez R; Sener A; Malaisse WJ
    Biochem Mol Med; 1995 Jun; 55(1):1-7. PubMed ID: 7551820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.