These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22044847)

  • 1. Signals from intraventricular depth electrodes can control a brain-computer interface.
    Shih JJ; Krusienski DJ
    J Neurosci Methods; 2012 Jan; 203(2):311-4. PubMed ID: 22044847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus.
    Krusienski DJ; Shih JJ
    J Neural Eng; 2011 Apr; 8(2):025006. PubMed ID: 21436521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a visual keyboard using an electrocorticographic brain-computer interface.
    Krusienski DJ; Shih JJ
    Neurorehabil Neural Repair; 2011 May; 25(4):323-31. PubMed ID: 20921326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG sensor selection by sparse spatial filtering in P300 speller brain-computer interface.
    Rivet B; Cecotti H; Phlypo R; Bertrand O; Maby E; Mattout J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5379-82. PubMed ID: 21096264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A case study on the relation between electroencephalographic and electrocorticographic event-related potentials.
    Krusienski DJ; Shih JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6019-22. PubMed ID: 21097114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode subset selection methods for an EEG-based P300 brain-computer interface.
    McCann MT; Thompson DE; Syed ZH; Huggins JE
    Disabil Rehabil Assist Technol; 2015 May; 10(3):216-20. PubMed ID: 24506528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Communication with a "P300" Matrix Speller Using Electrocorticographic Signals (ECoG).
    Brunner P; Ritaccio AL; Emrich JF; Bischof H; Schalk G
    Front Neurosci; 2011; 5():5. PubMed ID: 21369351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interface research at the wadsworth center developments in noninvasive communication and control.
    Krusienski DJ; Wolpaw JR
    Int Rev Neurobiol; 2009; 86():147-57. PubMed ID: 19607997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brain-computer interface for long-term independent home use.
    Sellers EW; Vaughan TM; Wolpaw JR
    Amyotroph Lateral Scler; 2010 Oct; 11(5):449-55. PubMed ID: 20583947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A P300-based Brain Computer Interface Using Stereo-electroencephalography Signals.
    Huang W; Yu T; Xiao J; Guo Q; Li Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3062-3066. PubMed ID: 31946534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm.
    Mayaud L; Congedo M; Van Laghenhove A; Orlikowski D; Figère M; Azabou E; Cheliout-Heraut F
    Neurophysiol Clin; 2013 Oct; 43(4):217-27. PubMed ID: 24094907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000.
    Wilson JA; Schalk G; Walton LM; Williams JC
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19641479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG
    Fahimi Hnazaee M; Verwoert M; Freudenburg ZV; van der Salm SMA; Aarnoutse EJ; Leinders S; Van Hulle MM; Ramsey NF; Vansteensel MJ
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35931055
    [No Abstract]   [Full Text] [Related]  

  • 17. P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients.
    Medina-Juliá MT; Fernández-Rodríguez Á; Velasco-Álvarez F; Ron-Angevin R
    Front Hum Neurosci; 2020; 14():583358. PubMed ID: 33192417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UMA-BCI Speller: An easily configurable P300 speller tool for end users.
    Velasco-Álvarez F; Sancha-Ros S; García-Garaluz E; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R
    Comput Methods Programs Biomed; 2019 Apr; 172():127-138. PubMed ID: 30902124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust sensor-selection method for P300 brain-computer interfaces.
    Cecotti H; Rivet B; Congedo M; Jutten C; Bertrand O; Maby E; Mattout J
    J Neural Eng; 2011 Feb; 8(1):016001. PubMed ID: 21245524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIBS block speller: toward a gaze-independent P300-based BCI.
    Pires G; Nunes U; Castelo-Branco M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6360-4. PubMed ID: 22255793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.