These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22044995)

  • 21. MnCo
    Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R
    ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.
    Delpuech N; Dupre N; Moreau P; Bridel JS; Gaubicher J; Lestriez B; Guyomard D
    ChemSusChem; 2016 Apr; 9(8):841-8. PubMed ID: 26915951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.
    Etacheri V; Hong CN; Pol VG
    Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.
    Wang SH; Hou SS; Kuo PL; Teng H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and properties of nano-LiCoO
    Brog JP; Crochet A; Seydoux J; Clift MJD; Baichette B; Maharajan S; Barosova H; Brodard P; Spodaryk M; Züttel A; Rothen-Rutishauser B; Kwon NH; Fromm KM
    J Nanobiotechnology; 2017 Aug; 15(1):58. PubMed ID: 28830490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.
    Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y
    Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12.
    Li D; He P; Li H; Zhou H
    Phys Chem Chem Phys; 2012 Jul; 14(25):9086-91. PubMed ID: 22635051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.
    Carraro G; Barreca D; Cruz-Yusta M; Gasparotto A; Maccato C; Morales J; Sada C; Sánchez L
    Chemphyschem; 2012 Dec; 13(17):3798-801. PubMed ID: 23097215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing.
    Lee JZ; Wynn TA; Meng YS; Santhanagopalan D
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors.
    Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.
    Kim Y
    ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.