These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22044995)
41. Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. Shao J; Li X; Wan Z; Zhang L; Ding Y; Zhang L; Qu Q; Zheng H ACS Appl Mater Interfaces; 2013 Aug; 5(16):7671-5. PubMed ID: 23915302 [TBL] [Abstract][Full Text] [Related]
42. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
43. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Wang RY; Wessells CD; Huggins RA; Cui Y Nano Lett; 2013; 13(11):5748-52. PubMed ID: 24147617 [TBL] [Abstract][Full Text] [Related]
44. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198 [TBL] [Abstract][Full Text] [Related]
45. Highly reversible lithium storage in Bacillus subtilis -directed porous Co₃O₄ nanostructures. Shim HW; Jin YH; Seo SD; Lee SH; Kim DW ACS Nano; 2011 Jan; 5(1):443-9. PubMed ID: 21155558 [TBL] [Abstract][Full Text] [Related]
46. Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection. Kim JG; Park MS; Hwang SM; Heo YU; Liao T; Sun Z; Park JH; Kim KJ; Jeong G; Kim YJ; Kim JH; Dou SX ChemSusChem; 2014 May; 7(5):1451-7. PubMed ID: 24700792 [TBL] [Abstract][Full Text] [Related]
47. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
48. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries. Zhang Q; Chen H; Wang J; Xu D; Li X; Yang Y; Zhang K ChemSusChem; 2014 Aug; 7(8):2325-34. PubMed ID: 24828680 [TBL] [Abstract][Full Text] [Related]
49. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Forney MW; Ganter MJ; Staub JW; Ridgley RD; Landi BJ Nano Lett; 2013 Sep; 13(9):4158-63. PubMed ID: 23902472 [TBL] [Abstract][Full Text] [Related]
50. Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO Sironval V; Reylandt L; Chaurand P; Ibouraadaten S; Palmai-Pallag M; Yakoub Y; Ucakar B; Rose J; Poleunis C; Vanbever R; Marbaix E; Lison D; van den Brule S Arch Toxicol; 2018 May; 92(5):1673-1684. PubMed ID: 29550861 [TBL] [Abstract][Full Text] [Related]
51. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries. Liu X; Yang J; Hou W; Wang J; Nuli Y ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572 [TBL] [Abstract][Full Text] [Related]
52. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331 [TBL] [Abstract][Full Text] [Related]
53. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries. Li Y; Bai Y; Bi X; Qian J; Ma L; Tian J; Wu C; Wu F; Lu J; Amine K ChemSusChem; 2016 Apr; 9(7):728-35. PubMed ID: 26940745 [TBL] [Abstract][Full Text] [Related]
54. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Tritsaris GA; Kaxiras E; Meng S; Wang E Nano Lett; 2013 May; 13(5):2258-63. PubMed ID: 23611247 [TBL] [Abstract][Full Text] [Related]
55. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes. Kim JG; Kim Y; Noh Y; Kim WB ChemSusChem; 2015 May; 8(10):1752-60. PubMed ID: 25908219 [TBL] [Abstract][Full Text] [Related]
56. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779 [TBL] [Abstract][Full Text] [Related]
57. Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries. Landa-Medrano I; Pinedo R; Ortiz-Vitoriano N; de Larramendi IR; Rojo T ChemSusChem; 2015 Dec; 8(23):3932-40. PubMed ID: 26493650 [TBL] [Abstract][Full Text] [Related]
58. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode. Chen J; Yano K ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639 [TBL] [Abstract][Full Text] [Related]
59. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Nayaka GP; Pai KV; Manjanna J; Keny SJ Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049 [TBL] [Abstract][Full Text] [Related]
60. Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials. Jo MR; Kim YI; Kim Y; Chae JS; Roh KC; Yoon WS; Kang YM ChemSusChem; 2014 Aug; 7(8):2248-54. PubMed ID: 24924807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]