These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. Li Z; Butun S; Aydin K ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803 [TBL] [Abstract][Full Text] [Related]
3. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Butun S; Aydin K Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029 [TBL] [Abstract][Full Text] [Related]
4. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Li Z; Palacios E; Butun S; Kocer H; Aydin K Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563 [TBL] [Abstract][Full Text] [Related]
5. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790 [TBL] [Abstract][Full Text] [Related]
6. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films. Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms. Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335 [TBL] [Abstract][Full Text] [Related]
13. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Nguyen DM; Lee D; Rho J Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672 [TBL] [Abstract][Full Text] [Related]
14. Polarization-sensitive perfect absorbers at near-infrared wavelengths. Meng L; Zhao D; Li Q; Qiu M Opt Express; 2013 Jan; 21 Suppl 1():A111-22. PubMed ID: 23389262 [TBL] [Abstract][Full Text] [Related]
15. MoS Sun Z; Huang F; Fu Y Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370 [TBL] [Abstract][Full Text] [Related]
16. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Lei L; Li S; Huang H; Tao K; Xu P Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770 [TBL] [Abstract][Full Text] [Related]
17. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407 [TBL] [Abstract][Full Text] [Related]
18. Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Feng P; Li WD; Zhang W Opt Express; 2015 Feb; 23(3):2328-38. PubMed ID: 25836100 [TBL] [Abstract][Full Text] [Related]
19. Broadband Near-Infrared Absorber Based on All Metallic Metasurface. Zhang K; Deng R; Song L; Zhang T Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708 [TBL] [Abstract][Full Text] [Related]