BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22044998)

  • 1. Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution.
    Carmi S; Church GM; Levanon EY
    Nat Commun; 2011 Nov; 2():519. PubMed ID: 22044998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes.
    Knisbacher BA; Levanon EY
    Mol Biol Evol; 2016 Feb; 33(2):554-67. PubMed ID: 26541172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.
    Knisbacher BA; Levanon EY
    Ann N Y Acad Sci; 2015 Apr; 1341():115-25. PubMed ID: 25722083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular genes derived from Gypsy/Ty3 retrotransposons in mammalian genomes.
    Volff JN
    Ann N Y Acad Sci; 2009 Oct; 1178():233-43. PubMed ID: 19845640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar Evolutionary Trajectories for Retrotransposon Accumulation in Mammals.
    Buckley RM; Kortschak RD; Raison JM; Adelson DL
    Genome Biol Evol; 2017 Sep; 9(9):2336-2353. PubMed ID: 28945883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian transposable elements and their impacts on genome evolution.
    Platt RN; Vandewege MW; Ray DA
    Chromosome Res; 2018 Mar; 26(1-2):25-43. PubMed ID: 29392473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Footprint of APOBEC3 on the genome of human retroelements.
    Anwar F; Davenport MP; Ebrahimi D
    J Virol; 2013 Jul; 87(14):8195-204. PubMed ID: 23698293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A co-opted gypsy-type LTR-retrotransposon is conserved in the genomes of humans, sheep, mice, and rats.
    Lynch C; Tristem M
    Curr Biol; 2003 Sep; 13(17):1518-23. PubMed ID: 12956954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How retrotransposons shape genome regulation.
    Mita P; Boeke JD
    Curr Opin Genet Dev; 2016 Apr; 37():90-100. PubMed ID: 26855260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Molecular Impacts of Retrotransposons in Development and Diseases.
    Tam PLF; Leung D
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation and rapid decay of non-LTR retrotransposons in the genome of the three-spine stickleback.
    Blass E; Bell M; Boissinot S
    Genome Biol Evol; 2012; 4(5):687-702. PubMed ID: 22534163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons.
    Bae YA; Moon SY; Kong Y; Cho SY; Rhyu MG
    Mol Biol Evol; 2001 Aug; 18(8):1474-83. PubMed ID: 11470838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulated retrotransposon transcriptome of mammalian cells.
    Faulkner GJ; Kimura Y; Daub CO; Wani S; Plessy C; Irvine KM; Schroder K; Cloonan N; Steptoe AL; Lassmann T; Waki K; Hornig N; Arakawa T; Takahashi H; Kawai J; Forrest AR; Suzuki H; Hayashizaki Y; Hume DA; Orlando V; Grimmond SM; Carninci P
    Nat Genet; 2009 May; 41(5):563-71. PubMed ID: 19377475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the functional role of retrotransposon dynamics in mammalian somatic cells.
    Mangiavacchi A; Liu P; Della Valle F; Orlando V
    Cell Mol Life Sci; 2021 Jul; 78(13):5245-5256. PubMed ID: 33990851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile elements and mammalian genome evolution.
    Deininger PL; Moran JV; Batzer MA; Kazazian HH
    Curr Opin Genet Dev; 2003 Dec; 13(6):651-8. PubMed ID: 14638329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A D-genome-originated Ty1/Copia-type retrotransposon family expanded significantly in tetraploid cottons.
    Li Q; Zhang Y; Zhang Z; Li X; Yao D; Wang Y; Ouyang X; Li Y; Song W; Xiao Y
    Mol Genet Genomics; 2018 Feb; 293(1):33-43. PubMed ID: 28849273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new look at the LTR retrotransposon content of the chicken genome.
    Mason AS; Fulton JE; Hocking PM; Burt DW
    BMC Genomics; 2016 Aug; 17(1):688. PubMed ID: 27577548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
    Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL
    PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.