BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 220459)

  • 1. Cyclic nucleotide phosphodiesterases in glomeruli of rat renal cortex.
    Torres VE; Hui YS; Shah SV; Northrup TE; Dousa TP
    Kidney Int; 1978 Nov; 14(5):444-51. PubMed ID: 220459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of several hormones on cyclic 3',5'-nucleotide phosphodiesterase in rat kidneys].
    Iwase K
    Nihon Naibunpi Gakkai Zasshi; 1983 Oct; 59(10):1678-91. PubMed ID: 6319206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cyclic nucleotides in islated rat glomeruli: role of histamine, carbamylcholine, parathyroid hormone, and angiotensin-II.
    Torres VE; Northrup TE; Edwards RM; Shah SV; Dousa TP
    J Clin Invest; 1978 Dec; 62(6):1334-43. PubMed ID: 219028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.
    Clauss F; Charloux A; Piquard F; Doutreleau S; Talha S; Zoll J; Lugnier C; Geny B
    Fundam Clin Pharmacol; 2015 Aug; 29(4):352-61. PubMed ID: 25939307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic 3',5'-adenosine monophosphate phosphodiesterase (cAMP PDE) and cyclic 3',5'-guanosine monophosphate phosphodiesterase (cGMP PDE) in microvessels isolated from bovine cortex.
    Stefanovich V
    Neurochem Res; 1979 Dec; 4(6):681-7. PubMed ID: 232543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of enzymes of cGMP metabolism in glomeruli and tubules isolated from normal and nephrotic rat kidney cortex.
    Helwig JJ; Yusufi AN; Rebel G; Geiser J; Bollack C; Mandel P
    Int J Biochem; 1980; 12(1-2):209-14. PubMed ID: 6105103
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective alteration of Ca2+-dependent and Ca2+-independent cyclic nucleotide phosphodiesterase activity in rat cerebral cortex by cyclic nucleotides and their analogs.
    Davis CW
    Biochim Biophys Acta; 1982 Jul; 705(1):1-7. PubMed ID: 6288105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetic properties and regulation of cyclic nucleotide phosphodiesterases in lymphoid cells].
    Azhaeva EV; Severin ES
    Bioorg Khim; 1987 Sep; 13(9):1157-63. PubMed ID: 2827690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissimilar cyclic nucleotide phosphodiesterase activities in subcellular fractions from normal and SV40-transformed WI-38 fibroblasts.
    Nemecek GM; Butcher RW
    J Cyclic Nucleotide Res; 1979 Dec; 5(6):449-61. PubMed ID: 94064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of soluble uterine cyclic nucleotide phosphodiesterase.
    Gardner EA; Thompson WJ; Strada SJ; Stancel GM
    Biochemistry; 1978 Jul; 17(15):2995-3000. PubMed ID: 212098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex.
    Sutor B; Mantell K; Bacher B
    Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thyroid status on membrane-bound low Km cyclic nucleotide phosphodiesterase activities in rat adipocytes.
    Goswami A; Rosenberg IN
    J Biol Chem; 1985 Jan; 260(1):82-5. PubMed ID: 2981228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of regucalcin on Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in rat kidney cytosol.
    Yamaguchi M; Kurota H
    Mol Cell Biochem; 1997 Dec; 177(1-2):209-14. PubMed ID: 9450664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic nucleotide phosphodiesterases in cultured normal and RCS rat pigment epithelium: kinetics of cyclic AMP and cyclic GMP hydrolysis.
    Kurtz MJ; Edwards RB; Schmidt SY
    Exp Eye Res; 1987 Jul; 45(1):67-75. PubMed ID: 2820772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early changes of guanylate cyclase and cGMP phosphodiesterase activities in glomeruli and tubules isolated from the remaining kidney after unilateral nephrectomy in the rabbit.
    Yusufi AN; Dancona C; Nguyen JL; Helwig JJ
    Ren Physiol; 1983; 6(2):80-6. PubMed ID: 6134309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-cycle-specific activity of cyclic nucleotide phosphodiesterase in Physarum polycephalum.
    Kupetz IS; Jeter JR
    Cell Tissue Kinet; 1985 Mar; 18(2):159-68. PubMed ID: 2982493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parathyroid hormone induces a calmodulin-dependent alteration in phosphodiesterase activity of rat kidney in vivo.
    Marcus R; Grant BF
    Endocrinology; 1983 Mar; 112(3):1065-9. PubMed ID: 6295744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.