BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22046108)

  • 1. Improved Binding Free Energy Predictions from Single-Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.
    Khavrutskii IV; Wallqvist A
    J Chem Theory Comput; 2011 Sep; 7(9):3001-3011. PubMed ID: 22046108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.
    Khavrutskii IV; Wallqvist A
    J Chem Theory Comput; 2010 Nov; 6(11):3427-3441. PubMed ID: 21151738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2008 Oct; 129(15):155102. PubMed ID: 19045232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute binding free energies for octa-acids and guests in SAMPL5 : Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge.
    Tofoleanu F; Lee J; Pickard Iv FC; König G; Huang J; Baek M; Seok C; Brooks BR
    J Comput Aided Mol Des; 2017 Jan; 31(1):107-118. PubMed ID: 27696242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating Solvent Dynamics with Replica Exchange for Improved Free Energy Sampling.
    Darkins R; Duffy DM; Ford IJ
    J Chem Theory Comput; 2023 Nov; 19(21):7527-7532. PubMed ID: 37864561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and Precision of Alchemical Relative Free Energy Predictions with and without Replica-Exchange.
    Wan S; Tresadern G; Pérez-Benito L; van Vlijmen H; Coveney PV
    Adv Theory Simul; 2020 Jan; 3(1):1900195. PubMed ID: 34527855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.
    Jiang W; Roux B
    J Chem Theory Comput; 2010 Jul; 6(9):2559-2565. PubMed ID: 21857813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of binding free energies of inhibitors to plasmepsin II.
    Steiner D; Oostenbrink C; Diederich F; Zürcher M; van Gunsteren WF
    J Comput Chem; 2011 Jul; 32(9):1801-12. PubMed ID: 21488062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex.
    Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD
    bioRxiv; 2023 Jun; ():. PubMed ID: 36945557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics.
    Wang K; Chodera JD; Yang Y; Shirts MR
    J Comput Aided Mol Des; 2013 Dec; 27(12):989-1007. PubMed ID: 24297454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
    Deng Y; Roux B
    J Chem Theory Comput; 2006 Sep; 2(5):1255-73. PubMed ID: 26626834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate absolute free energies for ligand-protein binding based on non-equilibrium approaches.
    Gapsys V; Yildirim A; Aldeghi M; Khalak Y; van der Spoel D; de Groot BL
    Commun Chem; 2021 May; 4(1):61. PubMed ID: 36697634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, Accurate, Precise, and Reliable Relative Free Energy Prediction Using Ensemble Based Thermodynamic Integration.
    Bhati AP; Wan S; Wright DW; Coveney PV
    J Chem Theory Comput; 2017 Jan; 13(1):210-222. PubMed ID: 27997169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
    Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 blind challenge.
    Lee J; Tofoleanu F; Pickard FC; König G; Huang J; Damjanović A; Baek M; Seok C; Brooks BR
    J Comput Aided Mol Des; 2017 Jan; 31(1):71-85. PubMed ID: 27677749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent-Trajectories Thermodynamic-Integration Free-Energy Changes for Biomolecular Systems: Determinants of H5N1 Avian Influenza Virus Neuraminidase Inhibition by Peramivir.
    Lawrenz M; Baron R; McCammon JA
    J Chem Theory Comput; 2009 Apr; 5(4):1106-1116. PubMed ID: 19461872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent-Trajectory Thermodynamic Integration: a practical guide to protein-drug binding free energy calculations using distributed computing.
    Lawrenz M; Baron R; Wang Y; McCammon JA
    Methods Mol Biol; 2012; 819():469-86. PubMed ID: 22183552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy calculations of protein-ligand interactions.
    de Ruiter A; Oostenbrink C
    Curr Opin Chem Biol; 2011 Aug; 15(4):547-52. PubMed ID: 21684797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded Ensemble Methods Can be Used to Accurately Predict Protein-Ligand Relative Binding Free Energies.
    Zhang S; Hahn DF; Shirts MR; Voelz VA
    J Chem Theory Comput; 2021 Oct; 17(10):6536-6547. PubMed ID: 34516130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.