These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22046123)

  • 1. A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields.
    Zylberberg J; Murphy JT; DeWeese MR
    PLoS Comput Biol; 2011 Oct; 7(10):e1002250. PubMed ID: 22046123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images.
    Zylberberg J; DeWeese MR
    PLoS Comput Biol; 2013; 9(8):e1003182. PubMed ID: 24009489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
    King PD; Zylberberg J; DeWeese MR
    J Neurosci; 2013 Mar; 33(13):5475-85. PubMed ID: 23536063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse coding in striate and extrastriate visual cortex.
    Willmore BD; Mazer JA; Gallant JL
    J Neurophysiol; 2011 Jun; 105(6):2907-19. PubMed ID: 21471391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields.
    Rehn M; Sommer FT
    J Comput Neurosci; 2007 Apr; 22(2):135-46. PubMed ID: 17053994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex.
    Ringach DL
    J Neurophysiol; 2002 Jul; 88(1):455-63. PubMed ID: 12091567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse coding and decorrelation in primary visual cortex during natural vision.
    Vinje WE; Gallant JL
    Science; 2000 Feb; 287(5456):1273-6. PubMed ID: 10678835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
    Olshausen BA; Field DJ
    Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contextual modulation of V1 receptive fields depends on their spatial symmetry.
    Sharpee TO; Victor JD
    J Comput Neurosci; 2009 Apr; 26(2):203-18. PubMed ID: 18679785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system.
    Zhu M; Rozell CJ
    PLoS Comput Biol; 2013; 9(8):e1003191. PubMed ID: 24009491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons.
    Wu Z; Rockwell H; Zhang Y; Tang S; Lee TS
    PLoS Comput Biol; 2021 Oct; 17(10):e1009528. PubMed ID: 34695120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is sparse and distributed the coding goal of simple cells?
    Zhao L
    Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained inference in sparse coding reproduces contextual effects and predicts laminar neural dynamics.
    Capparelli F; Pawelzik K; Ernst U
    PLoS Comput Biol; 2019 Oct; 15(10):e1007370. PubMed ID: 31581240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural image sequences constrain dynamic receptive fields and imply a sparse code.
    Häusler C; Susemihl A; Nawrot MP
    Brain Res; 2013 Nov; 1536():53-67. PubMed ID: 23933349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the Functional and Wiring Properties of V1 Neurons Through Sparse Coding.
    Hu X; Zeng Z
    Neural Comput; 2021 Dec; 34(1):104-137. PubMed ID: 34758484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the early visual system optimised to be energy efficient?
    Vincent BT; Baddeley RJ; Troscianko T; Gilchrist ID
    Network; 2005; 16(2-3):175-90. PubMed ID: 16411495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.