BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22046263)

  • 1. Ectodermal influx and cell hypertrophy provide early growth for all murine mammary rudiments, and are differentially regulated among them by Gli3.
    Lee MY; Racine V; Jagadpramana P; Sun L; Yu W; Du T; Spencer-Dene B; Rubin N; Le L; Ndiaye D; Bellusci S; Kratochwil K; Veltmaat JM
    PLoS One; 2011; 6(10):e26242. PubMed ID: 22046263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes.
    Veltmaat JM; Relaix F; Le LT; Kratochwil K; Sala FG; van Veelen W; Rice R; Spencer-Dene B; Mailleux AA; Rice DP; Thiery JP; Bellusci S
    Development; 2006 Jun; 133(12):2325-35. PubMed ID: 16720875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2).
    Tanimoto Y; Veistinen L; Alakurtti K; Takatalo M; Rice DP
    J Biol Chem; 2012 Jun; 287(25):21429-38. PubMed ID: 22547067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gli3-mediated repression of Hedgehog targets is required for normal mammary development.
    Hatsell SJ; Cowin P
    Development; 2006 Sep; 133(18):3661-70. PubMed ID: 16914490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gli3 is required for Emx gene expression during dorsal telencephalon development.
    Theil T; Alvarez-Bolado G; Walter A; Rüther U
    Development; 1999 Aug; 126(16):3561-71. PubMed ID: 10409502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Gli3 enhances the viability of embryonic telencephalic cells in vitro.
    Zaki PA; Martynoga B; Delafield-Butt JT; Fotaki V; Yu T; Price DJ
    Eur J Neurosci; 2005 Sep; 22(6):1547-51. PubMed ID: 16190908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development.
    McGlinn E; van Bueren KL; Fiorenza S; Mo R; Poh AM; Forrest A; Soares MB; Bonaldo Mde F; Grimmond S; Hui CC; Wainwright B; Wicking C
    Mech Dev; 2005 Nov; 122(11):1218-33. PubMed ID: 16169709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein.
    Yu T; Fotaki V; Mason JO; Price DJ
    J Comp Neurol; 2009 Feb; 512(5):613-27. PubMed ID: 19048639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal positioning of diencephalic cell types in neocortical tissue in the dorsal telencephalon of mice lacking functional Gli3.
    Fotaki V; Yu T; Zaki PA; Mason JO; Price DJ
    J Neurosci; 2006 Sep; 26(36):9282-92. PubMed ID: 16957084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wnt/β-catenin signaling is disrupted in the extra-toes (Gli3(Xt/Xt) ) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects.
    Fotaki V; Price DJ; Mason JO
    J Comp Neurol; 2011 Jun; 519(9):1640-57. PubMed ID: 21452227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation.
    Rice DP; Connor EC; Veltmaat JM; Lana-Elola E; Veistinen L; Tanimoto Y; Bellusci S; Rice R
    Hum Mol Genet; 2010 Sep; 19(17):3457-67. PubMed ID: 20570969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets.
    Veistinen LK; Mustonen T; Hasan MR; Takatalo M; Kobayashi Y; Kesper DA; Vortkamp A; Rice DP
    Front Physiol; 2017; 8():1036. PubMed ID: 29311969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birth defects caused by mutations in human GLI3 and mouse Gli3 genes.
    Naruse I; Ueta E; Sumino Y; Ogawa M; Ishikiriyama S
    Congenit Anom (Kyoto); 2010 Mar; 50(1):1-7. PubMed ID: 20201963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gli3 is required for maintenance and fate specification of cortical progenitors.
    Wang H; Ge G; Uchida Y; Luu B; Ahn S
    J Neurosci; 2011 Apr; 31(17):6440-8. PubMed ID: 21525285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gli activity is critical at multiple stages of embryonic mammary and nipple development.
    Chandramouli A; Hatsell SJ; Pinderhughes A; Koetz L; Cowin P
    PLoS One; 2013; 8(11):e79845. PubMed ID: 24260306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gli3 controls subplate formation and growth of cortical axons.
    Magnani D; Hasenpusch-Theil K; Theil T
    Cereb Cortex; 2013 Nov; 23(11):2542-51. PubMed ID: 22903314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy.
    Matera I; Watkins-Chow DE; Loftus SK; Hou L; Incao A; Silver DL; Rivas C; Elliott EC; Baxter LL; Pavan WJ
    Hum Mol Genet; 2008 Jul; 17(14):2118-31. PubMed ID: 18397875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling.
    Blaess S; Stephen D; Joyner AL
    Development; 2008 Jun; 135(12):2093-103. PubMed ID: 18480159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gli3 is required autonomously for dorsal telencephalic cells to adopt appropriate fates during embryonic forebrain development.
    Quinn JC; Molinek M; Mason JO; Price DJ
    Dev Biol; 2009 Mar; 327(1):204-15. PubMed ID: 19121302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10.
    Zakany J; Zacchetti G; Duboule D
    Dev Biol; 2007 Jun; 306(2):883-93. PubMed ID: 17467687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.