These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22046274)

  • 1. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface.
    Doud AJ; Lucas JP; Pisansky MT; He B
    PLoS One; 2011; 6(10):e26322. PubMed ID: 22046274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies.
    Royer AS; Doud AJ; Rose ML; He B
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):581-9. PubMed ID: 20876032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.
    LaFleur K; Cassady K; Doud A; Shades K; Rogin E; He B
    J Neural Eng; 2013 Aug; 10(4):046003. PubMed ID: 23735712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback.
    Ang KK; Guan C; Chua KS; Ang BT; Kuah C; Wang C; Phua KS; Chin ZY; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5549-52. PubMed ID: 21096475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface.
    Corralejo R; Hornero R; Álvarez D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7703-6. PubMed ID: 22256123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Week-long visuomotor coordination and relaxation trainings do not increase sensorimotor rhythms (SMR) based brain-computer interface performance.
    Botrel L; Kübler A
    Behav Brain Res; 2019 Oct; 372():111993. PubMed ID: 31163204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An MEG-based brain-computer interface (BCI).
    Mellinger J; Schalk G; Braun C; Preissl H; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2007 Jul; 36(3):581-93. PubMed ID: 17475511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.
    Davis KC; Meschede-Krasa B; Cajigas I; Prins NW; Alver C; Gallo S; Bhatia S; Abel JH; Naeem JA; Fisher L; Raza F; Rifai WR; Morrison M; Ivan ME; Brown EN; Jagid JR; Prasad A
    J Neuroeng Rehabil; 2022 Jun; 19(1):53. PubMed ID: 35659259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm.
    Yue J; Zhou Z; Jiang J; Liu Y; Hu D
    Neurosci Lett; 2012 Aug; 524(2):95-100. PubMed ID: 22841698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Android Feedback-Based Training Modulates Sensorimotor Rhythms During Motor Imagery.
    Penaloza CI; Alimardani M; Nishio S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):666-674. PubMed ID: 29522410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface].
    Vasilyev AN; Liburkina SP; Kaplan AY
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 May; 66(3):302-312. PubMed ID: 30695412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 19. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment.
    Leeb R; Lee F; Keinrath C; Scherer R; Bischof H; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):473-82. PubMed ID: 18198704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.