These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22046374)
21. Staphylococcus aureus biofilm inhibition by high voltage prick electrostatic field (HVPEF) and the mechanism investigation. Qi M; Liu Q; Liu Y; Yan H; Zhang Y; Yuan Y Int J Food Microbiol; 2022 Feb; 362():109499. PubMed ID: 34906789 [TBL] [Abstract][Full Text] [Related]
22. Pfs promotes autolysis-dependent release of eDNA and biofilm formation in Staphylococcus aureus. Bao Y; Zhang X; Jiang Q; Xue T; Sun B Med Microbiol Immunol; 2015 Apr; 204(2):215-26. PubMed ID: 25187407 [TBL] [Abstract][Full Text] [Related]
23. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Ha KR; Psaltis AJ; Butcher AR; Wormald PJ; Tan LW Laryngoscope; 2008 Mar; 118(3):535-40. PubMed ID: 18090864 [TBL] [Abstract][Full Text] [Related]
24. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. Sharifi A; Mohammadzadeh A; Zahraei Salehi T; Mahmoodi P J Appl Microbiol; 2018 Feb; 124(2):379-388. PubMed ID: 29144601 [TBL] [Abstract][Full Text] [Related]
25. Influence of magnolol on the secretion of alpha-toxin by Staphylococcus aureus. Xiang H; Qiu JZ; Wang DC; Jiang YS; Xia LJ; Deng XM Molecules; 2010 Mar; 15(3):1679-89. PubMed ID: 20336007 [TBL] [Abstract][Full Text] [Related]
26. The Functional Study of Response Regulator ArlR Mutants in Staphylococcus Aureus. Zhou J; Refat M; Guo Y; Zhang J; Jiao M; He W; He X; Rabie MA; Ouyang Z; Zheng F Appl Biochem Biotechnol; 2024 Mar; ():. PubMed ID: 38530540 [TBL] [Abstract][Full Text] [Related]
27. Effects of oxacillin and tetracycline on autolysis, autolysin processing and atl transcription in Staphylococcus aureus. Ledala N; Wilkinson BJ; Jayaswal RK Int J Antimicrob Agents; 2006 Jun; 27(6):518-24. PubMed ID: 16707247 [TBL] [Abstract][Full Text] [Related]
28. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. Kaplan JB; Izano EA; Gopal P; Karwacki MT; Kim S; Bose JL; Bayles KW; Horswill AR mBio; 2012; 3(4):e00198-12. PubMed ID: 22851659 [TBL] [Abstract][Full Text] [Related]
29. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Glatthardt T; Campos JCM; Chamon RC; de Sá Coimbra TF; Rocha GA; de Melo MAF; Parente TE; Lobo LA; Antunes LCM; Dos Santos KRN; Ferreira RBR Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862721 [TBL] [Abstract][Full Text] [Related]
30. Does Extracellular DNA Production Vary in Staphylococcal Biofilms Isolated From Infected Implants versus Controls? Zatorska B; Groger M; Moser D; Diab-Elschahawi M; Lusignani LS; Presterl E Clin Orthop Relat Res; 2017 Aug; 475(8):2105-2113. PubMed ID: 28194715 [TBL] [Abstract][Full Text] [Related]
31. GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release. Fischer A; Kambara K; Meyer H; Stenz L; Bonetti EJ; Girard M; Lalk M; Francois P; Schrenzel J Int J Med Microbiol; 2014 May; 304(3-4):284-99. PubMed ID: 24275081 [TBL] [Abstract][Full Text] [Related]
32. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Ingavale SS; Van Wamel W; Cheung AL Mol Microbiol; 2003 Jun; 48(6):1451-66. PubMed ID: 12791130 [TBL] [Abstract][Full Text] [Related]
33. Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity. Kim YG; Lee JH; Lee J Phytomedicine; 2021 Oct; 91():153710. PubMed ID: 34461422 [TBL] [Abstract][Full Text] [Related]
34. Shukla SK; Rao TS Indian J Med Res; 2017 Jul; 146(Supplement):S1-S8. PubMed ID: 29205189 [TBL] [Abstract][Full Text] [Related]
35. Activity of novel inhibitors of Staphylococcus aureus biofilms. Woo SG; Lee SY; Lee SM; Lim KH; Ha EJ; Eom YB Folia Microbiol (Praha); 2017 Mar; 62(2):157-167. PubMed ID: 27864779 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Bakkiyaraj D; Pandian SK Biofouling; 2010 Aug; 26(6):711-7. PubMed ID: 20706890 [TBL] [Abstract][Full Text] [Related]
38. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. Sun L; Liao K; Wang D PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475 [TBL] [Abstract][Full Text] [Related]
39. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Lee JH; Kim YG; Yong Ryu S; Lee J Sci Rep; 2016 Jan; 6():19267. PubMed ID: 26763935 [TBL] [Abstract][Full Text] [Related]
40. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans. Sakaue Y; Domon H; Oda M; Takenaka S; Kubo M; Fukuyama Y; Okiji T; Terao Y Microbiol Immunol; 2016 Jan; 60(1):10-6. PubMed ID: 26600203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]