These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22046720)

  • 41. Asymmetrical slip propensity: required coefficient of friction.
    Seo JS; Kim S
    J Neuroeng Rehabil; 2013 Jul; 10():84. PubMed ID: 23902896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coefficient of friction, walking speed and cadence on slippery and dry surfaces: shoes with different groove depths.
    Ziaei M; Mokhtarinia H; Tabatabai Ghomshe F; Maghsoudipour M
    Int J Occup Saf Ergon; 2019 Dec; 25(4):524-529. PubMed ID: 29134923
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of load carrying on required coefficient of friction.
    Seo JS; Kim S
    Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.
    Tsai YJ; Powers CM
    Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of a heel-mounted accelerometer as an adjunct measure of slip distance.
    McGorry RW; DiDomenico A; Chang CC
    Appl Ergon; 2007 May; 38(3):369-76. PubMed ID: 16806040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Required friction during overground walking is lower among obese compared to non-obese older men, but does not differ with obesity among women.
    Arena SL; Garman CR; Nussbaum MA; Madigan ML
    Appl Ergon; 2017 Jul; 62():77-82. PubMed ID: 28411741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.
    Chang WR; Matz S; Chang CC
    Appl Ergon; 2014 May; 45(3):811-5. PubMed ID: 24268803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between age-related gait adaptations and required coefficient of friction.
    Kim S; Lockhart T; Yoon HY
    Saf Sci; 2005 Aug; 43(7):425-436. PubMed ID: 20582254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Step length and required friction in walking.
    Cooper RC; Prebeau-Menezes LM; Butcher MT; Bertram JE
    Gait Posture; 2008 May; 27(4):547-51. PubMed ID: 17703942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Research on ground reaction forces and utilized coefficient of friction of turning gait].
    Cheng F; Zhang J; Su H; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Feb; 34(1):53-6. PubMed ID: 29717587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New method for assessment of gait variability based on wearable ground reaction force sensor.
    Liu T; Inoue Y; Shibata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2341-4. PubMed ID: 19163171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corner height influences center of mass kinematics and path trajectory during turning.
    Fino PC; Lockhart TE; Fino NF
    J Biomech; 2015 Jan; 48(1):104-12. PubMed ID: 25468662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking.
    Burnfield JM; Powers CM
    J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions.
    Chang WR; Grönqvist R; Leclercq S; Myung R; Makkonen L; Strandberg L; Brungraber RJ; Mattke U; Thorpe SC
    Ergonomics; 2001 Oct; 44(13):1217-32. PubMed ID: 11794765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predictive multiscale computational model of shoe-floor coefficient of friction.
    Moghaddam SRM; Acharya A; Redfern MS; Beschorner KE
    J Biomech; 2018 Jan; 66():145-152. PubMed ID: 29183657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect on the parameters of the high-heel shoe and transfer time of ground reaction force during level walking.
    Hyun SH; Kim YP; Ryew CC
    J Exerc Rehabil; 2016 Oct; 12(5):451-455. PubMed ID: 27807524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prospective gait changes as a function of shifting perceptions of slipperiness: effects of visual and somatosensory cues.
    Lesch MF; Chang CC; Chang WR
    Ergonomics; 2016 May; 59(5):704-16. PubMed ID: 26443491
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of Barefoot Walking and Shod Walking Between Children with and Without Flat Feet.
    Chen JP; Chung MJ; Wu CY; Cheng KW; Wang MJ
    J Am Podiatr Med Assoc; 2015 May; 105(3):218-25. PubMed ID: 26146967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ground reaction forces and frictional demands during stair descent: effects of age and illumination.
    Christina KA; Cavanagh PR
    Gait Posture; 2002 Apr; 15(2):153-8. PubMed ID: 11869909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.