These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 22046760)
1. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Ruttens A; Boulet J; Weyens N; Smeets K; Adriaensen K; Meers E; Van Slycken S; Tack F; Meiresonne L; Thewys T; Witters N; Carleer R; Dupae J; Vangronsveld J Int J Phytoremediation; 2011; 13 Suppl 1():194-207. PubMed ID: 22046760 [TBL] [Abstract][Full Text] [Related]
2. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Van Slycken S; Witters N; Meiresonne L; Meers E; Ruttens A; Van Peteghem P; Weyens N; Tack FM; Vangronsveld J Int J Phytoremediation; 2013; 15(7):677-89. PubMed ID: 23819267 [TBL] [Abstract][Full Text] [Related]
3. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656 [TBL] [Abstract][Full Text] [Related]
4. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
5. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987 [TBL] [Abstract][Full Text] [Related]
6. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Hu Y; Nan Z; Jin C; Wang N; Luo H Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
8. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
9. ASSOCIATED BACTERIA INCREASE THE PHYTOEXTRACTION OF CADMIUM AND ZINC FROM A METAL-CONTAMINATED SOIL BY MYCORRHIZAL WILLOWS. Zimmer D; Baum C; Leinweber P; Hrynkiewicz K; Meissner R Int J Phytoremediation; 2009 Feb; 11(2):200-213. PubMed ID: 28134000 [TBL] [Abstract][Full Text] [Related]
10. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb, and Zn bioaccumulation and plant growth. Mleczek M; Kozlowska M; Kaczmarek Z; Chadzinikolau T; Golinski P Int J Phytoremediation; 2012 Jan; 14(1):75-88. PubMed ID: 22567696 [TBL] [Abstract][Full Text] [Related]
11. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils? Vondráčková S; Tlustoš P; Száková J Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494 [TBL] [Abstract][Full Text] [Related]
12. Is the harvest of Salix and Populus clones in the growing season truly advantageous for the phytoextraction of metals from a long-term perspective? Kubátová P; Žilinčíková N; Száková J; Zemanová V; Tlustoš P Sci Total Environ; 2022 Sep; 838(Pt 4):156630. PubMed ID: 35697216 [TBL] [Abstract][Full Text] [Related]
13. Phytoextraction of heavy metals by willows growing in biosolids under field conditions. Laidlaw WS; Arndt SK; Huynh TT; Gregory D; Baker AJ J Environ Qual; 2012; 41(1):134-43. PubMed ID: 22218182 [TBL] [Abstract][Full Text] [Related]
14. Lead uptake and translocation by willows in pot and field experiments. Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515 [TBL] [Abstract][Full Text] [Related]
15. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
16. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Komárek M; Tlustos P; Száková J; Chrastný V Environ Pollut; 2008 Jan; 151(1):27-38. PubMed ID: 17467862 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. Janssen J; Weyens N; Croes S; Beckers B; Meiresonne L; Van Peteghem P; Carleer R; Vangronsveld J Int J Phytoremediation; 2015; 17(11):1123-36. PubMed ID: 25942689 [TBL] [Abstract][Full Text] [Related]
18. Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Iqbal M; Puschenreiter M; Oburger E; Santner J; Wenzel WW Environ Pollut; 2012 Nov; 170():222-31. PubMed ID: 22842051 [TBL] [Abstract][Full Text] [Related]
19. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
20. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique. Huynh TT; Laidlaw WS; Singh B; Gregory D; Baker AJ Environ Pollut; 2008 Dec; 156(3):874-82. PubMed ID: 18586368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]