These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 22047078)

  • 1. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa.
    Talevich E; Mirza A; Kannan N
    BMC Evol Biol; 2011 Nov; 11():321. PubMed ID: 22047078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites.
    Keyloun KR; Reid MC; Choi R; Song Y; Fox AMW; Hillesland HK; Zhang Z; Vidadala R; Merritt EA; Lau AOT; Maly DJ; Fan E; Barrett LK; Van Voorhis WC; Ojo KK
    Parasitology; 2014 Sep; 141(11):1499-1509. PubMed ID: 24927073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha.
    Kannan N; Neuwald AF
    Protein Sci; 2004 Aug; 13(8):2059-77. PubMed ID: 15273306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics.
    Peng Y; Keenan SM; Welsh WJ
    J Mol Graph Model; 2005 Sep; 24(1):72-80. PubMed ID: 16046158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinomes of apicomplexan parasites.
    Miranda-Saavedra D; Gabaldón T; Barton GJ; Langsley G; Doerig C
    Microbes Infect; 2012 Aug; 14(10):796-810. PubMed ID: 22587893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of Apicomplexan protein kinases at each life cycle stage.
    Kato K; Sugi T; Iwanaga T
    Parasitol Int; 2012 Jun; 61(2):224-34. PubMed ID: 22209882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of parasitic CDPK domains point to a common mechanism of activation.
    Wernimont AK; Amani M; Qiu W; Pizarro JC; Artz JD; Lin YH; Lew J; Hutchinson A; Hui R
    Proteins; 2011 Mar; 79(3):803-20. PubMed ID: 21287613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors.
    Talevich E; Kannan N
    BMC Evol Biol; 2013 Jun; 13():117. PubMed ID: 23742205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches for protein kinase substrate identification in Apicomplexa.
    Cabral G; Moss WJ; Brown KM
    Mol Biochem Parasitol; 2024 Sep; 259():111633. PubMed ID: 38821187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TKL family kinases in human apicomplexan pathogens.
    Ali DH; Gaji RY
    Mol Biochem Parasitol; 2024 Sep; 259():111628. PubMed ID: 38719028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa.
    Nagamune K; Sibley LD
    Mol Biol Evol; 2006 Aug; 23(8):1613-27. PubMed ID: 16751258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria.
    Kuo CH; Kissinger JC
    BMC Evol Biol; 2008 Apr; 8():108. PubMed ID: 18405380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel insights on ENTH domain-containing proteins in apicomplexan parasites.
    Kibria KM; Hossain MU; Oany AR; Ahmad SA
    Parasitol Res; 2016 Jun; 115(6):2191-202. PubMed ID: 26922178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans.
    Hui R; El Bakkouri M; Sibley LD
    Trends Pharmacol Sci; 2015 Jul; 36(7):452-60. PubMed ID: 26002073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PfPK6, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from Plasmodium falciparum.
    Bracchi-Ricard V; Barik S; Delvecchio C; Doerig C; Chakrabarti R; Chakrabarti D
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):255-63. PubMed ID: 10727426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting malaria with specific CDK inhibitors.
    Geyer JA; Prigge ST; Waters NC
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):160-70. PubMed ID: 16185941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origins of apicomplexan sequence innovation.
    Wasmuth J; Daub J; Peregrín-Alvarez JM; Finney CA; Parkinson J
    Genome Res; 2009 Jul; 19(7):1202-13. PubMed ID: 19363216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) and its role in microneme secretion during erythrocyte invasion.
    Bansal A; Singh S; More KR; Hans D; Nangalia K; Yogavel M; Sharma A; Chitnis CE
    J Biol Chem; 2013 Jan; 288(3):1590-602. PubMed ID: 23204525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents.
    Keenan SM; Welsh WJ
    J Mol Graph Model; 2004 Jan; 22(3):241-7. PubMed ID: 14629982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote.
    Ward P; Equinet L; Packer J; Doerig C
    BMC Genomics; 2004 Oct; 5():79. PubMed ID: 15479470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.