These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22047275)

  • 21. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.
    Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z
    Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer.
    Long Y; Chen H; Wang H; Peng Z; Yang Y; Zhang G; Li N; Liu F; Pei J
    Anal Chim Acta; 2012 Sep; 744():82-91. PubMed ID: 22935378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
    Ali MA; Shoaee S; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chemphyschem; 2016 Nov; 17(21):3350-3353. PubMed ID: 27583839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films.
    Walker NR; Linman MJ; Timmers MM; Dean SL; Burkett CM; Lloyd JA; Keelor JD; Baughman BM; Edmiston PL
    Anal Chim Acta; 2007 Jun; 593(1):82-91. PubMed ID: 17531827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optofluidic ring resonator sensors for rapid DNT vapor detection.
    Sun Y; Liu J; Frye-Mason G; Ja SJ; Thompson AK; Fan X
    Analyst; 2009 Jul; 134(7):1386-91. PubMed ID: 19562206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis.
    Shpigel E; Shemer B; Elad T; Glozman A; Belkin S
    Appl Microbiol Biotechnol; 2021 May; 105(10):4329-4337. PubMed ID: 33942130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, implementation, and field testing of a portable fluorescence-based vapor sensor.
    Aernecke MJ; Guo J; Sonkusale S; Walt DR
    Anal Chem; 2009 Jul; 81(13):5281-90. PubMed ID: 19563211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs.
    Taudte RV; Beavis A; Wilson-Wilde L; Roux C; Doble P; Blanes L
    Lab Chip; 2013 Nov; 13(21):4164-72. PubMed ID: 23959203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency.
    Vijayakumar C; Tobin G; Schmitt W; Kim MJ; Takeuchi M
    Chem Commun (Camb); 2010 Feb; 46(6):874-6. PubMed ID: 20107635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene.
    Zhang HX; Hu JS; Yan CJ; Jiang L; Wan LJ
    Phys Chem Chem Phys; 2006 Aug; 8(30):3567-72. PubMed ID: 16871348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers.
    Bunte G; Hürttlen J; Pontius H; Hartlieb K; Krause H
    Anal Chim Acta; 2007 May; 591(1):49-56. PubMed ID: 17456423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid, on-site identification of explosives in nanoliter droplets using a UV reflected fiber optic sensor.
    Li X; Li Q; Zhou H; Hao H; Wang T; Zhao S; Lu Y; Huang G
    Anal Chim Acta; 2012 Nov; 751():112-8. PubMed ID: 23084059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines.
    Aguado R; Santos ARMG; Vallejos S; Valente AJM
    Molecules; 2022 May; 27(9):. PubMed ID: 35566254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular recognition and self-assembled polymer films for vapor phase detection of explosives.
    Yang X; Du XX; Shi J; Swanson B
    Talanta; 2001 May; 54(3):439-45. PubMed ID: 18968269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of explosives using electrochemically reduced graphene.
    Chen TW; Sheng ZH; Wang K; Wang FB; Xia XH
    Chem Asian J; 2011 May; 6(5):1210-6. PubMed ID: 21387564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates.
    Khaing Oo MK; Chang CF; Sun Y; Fan X
    Analyst; 2011 Jul; 136(13):2811-7. PubMed ID: 21594246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid detection of nitroaromatic and nitramine explosives on chromatographic paper and their reflectometric sensing on PVC tablets.
    Erçağ E; Uzer A; Eren S; Sağlam S; Filik H; Apak R
    Talanta; 2011 Sep; 85(4):2226-32. PubMed ID: 21872082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.