These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22047296)

  • 41. Transverse interferometry of a hydrogen-filled capillary discharge waveguide.
    Gonsalves AJ; Rowlands-Rees TP; Broks BH; van der Mullen JJ; Hooker SM
    Phys Rev Lett; 2007 Jan; 98(2):025002. PubMed ID: 17358614
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanosecond high radiance standard source.
    Krompholz H; Fischer H
    Appl Opt; 1974 Jan; 13(1):203-5. PubMed ID: 20125946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel.
    Kaganovich D; Ting A; Moore CI; Zigler A; Burris HR; Ehrlich Y; Hubbard R; Sprangle P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):R4769-72. PubMed ID: 11969516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dramatic enhancement of optical-field-ionization collisional-excitation x-ray lasing by an optically preformed plasma waveguide.
    Chou MC; Lin PH; Lin CA; Lin JY; Wang J; Chen SY
    Phys Rev Lett; 2007 Aug; 99(6):063904. PubMed ID: 17930825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical analysis of surface produced H- ions by using two-dimensional particle-in-cell method.
    Miyamoto K; Okuda S; Hatayama A; Hanada M
    Rev Sci Instrum; 2012 Feb; 83(2):02A723. PubMed ID: 22380232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides.
    Wiggins SM; Reijnders MP; Abuazoum S; Hart K; Welsh GH; Issac RC; Jones DR; Jaroszynski DA
    Rev Sci Instrum; 2011 Sep; 82(9):096104. PubMed ID: 21974631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and Analysis of a High Brightness Axial Flash lamp.
    Holzrichter JF; Emmett JL
    Appl Opt; 1969 Jul; 8(7):1459-65. PubMed ID: 20072454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparisons of waveguide folding geometries in a CO(2) z-fold laser.
    Jackson PE; Hall DR; Hill CA
    Appl Opt; 1989 Mar; 28(5):935-41. PubMed ID: 20548588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Percolation simulation of laser-guided electrical discharges.
    Sasaki A; Kishimoto Y; Takahashi E; Kato S; Fujii T; Kanazawa S
    Phys Rev Lett; 2010 Aug; 105(7):075004. PubMed ID: 20868054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrahigh-intensity optical slow-wave structure.
    Layer BD; York A; Antonsen TM; Varma S; Chen YH; Leng Y; Milchberg HM
    Phys Rev Lett; 2007 Jul; 99(3):035001. PubMed ID: 17678290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrical conductivity measurements of strongly coupled W plasmas.
    Saleem S; Haun J; Kunze HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056403. PubMed ID: 11736097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlocal-thermal-equilibrium model of a pulsed capillary discharge waveguide.
    Broks BH; Garloff K; van der Mullen JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016401. PubMed ID: 15697729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical and analytical models to study the laser-driven plasma perturbation in a dielectric gas-filled capillary waveguide.
    Curcio A; Petrarca M; Giulietti D; Ferrario M
    Opt Lett; 2016 Sep; 41(18):4233-6. PubMed ID: 27628365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Periodic index-modulated plasma waveguide.
    Layer BD; York AG; Varma S; Chen YH; Milchberg HM
    Opt Express; 2009 Mar; 17(6):4263-7. PubMed ID: 19293850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser-induced gas breakdown and its application to switching.
    Kumar V; Thareja RK
    Appl Opt; 1992 Jun; 31(18):3460-2. PubMed ID: 20725312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a cascade arc discharge source for an atmosphere-vacuum interface device.
    Namba S; Endo T; Fujino S; Suzuki C; Tamura N
    Rev Sci Instrum; 2016 Aug; 87(8):083503. PubMed ID: 27587119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrodynamic optical-field-ionized plasma channels.
    Shalloo RJ; Arran C; Corner L; Holloway J; Jonnerby J; Walczak R; Milchberg HM; Hooker SM
    Phys Rev E; 2018 May; 97(5-1):053203. PubMed ID: 29906935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon.
    Zhang Z; Shneider MN; Miles RB
    Phys Rev Lett; 2007 Jun; 98(26):265005. PubMed ID: 17678098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Observation of postsoliton expansion following laser propagation through an underdense plasma.
    Sarri G; Singh DK; Davies JR; Fiuza F; Lancaster KL; Clark EL; Hassan S; Jiang J; Kageiwa N; Lopes N; Rehman A; Russo C; Scott RH; Tanimoto T; Najmudin Z; Tanaka KA; Tatarakis M; Borghesi M; Norreys PA
    Phys Rev Lett; 2010 Oct; 105(17):175007. PubMed ID: 21231057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-repetition-rate XeCl waveguide laser without gas flow.
    Christensen CP; Gordon Iii C; Moutoulas C; Feldman BJ
    Opt Lett; 1987 Mar; 12(3):169-71. PubMed ID: 19738828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.