These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22047313)

  • 1. Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90 GHz.
    Hunger J; Cerjak I; Schoenmaker H; Bonn M; Bakker HJ
    Rev Sci Instrum; 2011 Oct; 82(10):104703. PubMed ID: 22047313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids.
    Igarashi B; Christensen T; Larsen EH; Olsen NB; Pedersen IH; Rasmussen T; Dyre JC
    Rev Sci Instrum; 2008 Apr; 79(4):045106. PubMed ID: 18447551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smith-chart diagnostics for multi-GHz time-domain-reflectometry dielectric spectroscopy.
    Hager NE; Domszy RC; Tofighi MR
    Rev Sci Instrum; 2012 Feb; 83(2):025108. PubMed ID: 22380126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.
    Allen KW; Scott MM; Reid DR; Bean JA; Ellis JD; Morris AP; Marsh JM
    Rev Sci Instrum; 2016 May; 87(5):054703. PubMed ID: 27250447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
    Nakanishi M; Sasaki Y; Nozaki R
    Rev Sci Instrum; 2010 Dec; 81(12):123902. PubMed ID: 21198035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Millimeter wave silicon micromachined waveguide probe as an aid for skin diagnosis--results of measurements on phantom material with varied water content.
    Dancila D; Augustine R; Töpfer F; Dudorov S; Hu X; Emtestam L; Tenerz L; Oberhammer J; Rydberg A
    Skin Res Technol; 2014 Feb; 20(1):116-23. PubMed ID: 23845091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration-independent measurement of complex permittivity of liquids using a coaxial transmission line.
    Guoxin C
    Rev Sci Instrum; 2015 Jan; 86(1):014704. PubMed ID: 25638105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparatus and method to measure dielectric properties (epsilon(') and epsilon(")) of ionic liquids.
    Göllei A; Vass A; Pallai E; Gerzson M; Ludányi L; Mink J
    Rev Sci Instrum; 2009 Apr; 80(4):044703. PubMed ID: 19405682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.
    Hasar UC
    Rev Sci Instrum; 2009 May; 80(5):056103. PubMed ID: 19485540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple capacitive cell for the measurement of liquids dielectric constant under transient thermal conditions.
    Baudot A; Bret JL
    Cryo Letters; 2003; 24(1):5-16. PubMed ID: 12644848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric method of ac loss measurement in a rotating magnetic field.
    Ghoshal PK; Coombs TA; Campbell AM
    Rev Sci Instrum; 2010 Jul; 81(7):074702. PubMed ID: 20687748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.
    Pronin AV; Goncharov YG; Fischer T; Wosnitza J
    Rev Sci Instrum; 2009 Dec; 80(12):123904. PubMed ID: 20059151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A calibration-independent method for accurate complex permittivity determination of liquid materials.
    Hasar UC
    Rev Sci Instrum; 2008 Aug; 79(8):086114. PubMed ID: 19044395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standard-independent estimation of dielectric permittivity with microdielectric fringe-effect sensors.
    Choi YH; Skliar M
    Anal Chem; 2005 Feb; 77(3):871-7. PubMed ID: 15679356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer.
    Rahman R; Taylor PC; Scales JA
    Rev Sci Instrum; 2013 Aug; 84(8):083901. PubMed ID: 24007073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope.
    Gregory AP; Blackburn JF; Lees K; Clarke RN; Hodgetts TE; Hanham SM; Klein N
    Ultramicroscopy; 2016 Feb; 161():137-145. PubMed ID: 26686660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.
    Eves EE; Murphy EK; Yakovlev VV
    J Microw Power Electromagn Energy; 2007; 41(4):81-94. PubMed ID: 18557399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondestructive approach for measuring temperature-dependent dielectric properties of epoxy resins.
    Akhtar MJ; Feher LE; Thumm M
    J Microw Power Electromagn Energy; 2008; 42(3):17-26. PubMed ID: 19227067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study.
    D'Alvia L; Piuzzi E; Cataldo A; Del Prete Z
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New ultrasonic Bleustein-Gulyaev wave method for measuring the viscosity of liquids at high pressure.
    Kiełczyński P; Szalewski M; Siegoczyński RM; Rostocki AJ
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026109. PubMed ID: 18315341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.