These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22047352)

  • 1. Automated temporal tracking and segmentation of lymphoma on serial CT examinations.
    Xu J; Greenspan H; Napel S; Rubin DL
    Med Phys; 2011 Nov; 38(11):5879-86. PubMed ID: 22047352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake model-based lymphoma segmentation for sequential CT images.
    Chen Q; Quan F; Xu J; Rubin DL
    Comput Methods Programs Biomed; 2013 Aug; 111(2):366-75. PubMed ID: 23787027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated matching and segmentation of lymphoma on serial CT examinations.
    Yan J; Zhao B; Curran S; Zelenetz A; Schwartz LH
    Med Phys; 2007 Jan; 34(1):55-62. PubMed ID: 17278490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided lymph node segmentation in volumetric CT data.
    Beichel RR; Wang Y
    Med Phys; 2012 Sep; 39(9):5419-28. PubMed ID: 22957609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MSCT follow-up in malignant lymphoma: comparison of manual linear measurements with semi-automated lymph node analysis for therapy response classification.
    Weßling J; Puesken M; Koch R; Kohlhase N; Persigehl T; Mesters R; Heindel W; Buerke B
    Rofo; 2012 Sep; 184(9):795-804. PubMed ID: 22618478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-controlled watershed for lymphoma segmentation in sequential CT images.
    Yan J; Zhao B; Wang L; Zelenetz A; Schwartz LH
    Med Phys; 2006 Jul; 33(7):2452-60. PubMed ID: 16898448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical lymph node staging--influence of slice thickness and reconstruction kernel on volumetry and RECIST measurements.
    Fabel M; Wulff A; Heckel F; Bornemann L; Freitag-Wolf S; Heller M; Biederer J; Bolte H
    Eur J Radiol; 2012 Nov; 81(11):3124-30. PubMed ID: 22464844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images.
    Chen A; Deeley MA; Niermann KJ; Moretti L; Dawant BM
    Med Phys; 2010 Dec; 37(12):6338-46. PubMed ID: 21302791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automating the tracking of lymph nodes in follow-up studies of thoracic CT images.
    Yu P; Sheah K; Poh CL
    Comput Methods Programs Biomed; 2012 Jun; 106(3):150-9. PubMed ID: 20934774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic lung tumor segmentation with leaks removal in follow-up CT studies.
    Vivanti R; Joskowicz L; Karaaslan OA; Sosna J
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1505-14. PubMed ID: 25605297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.
    Qazi AA; Pekar V; Kim J; Xie J; Breen SL; Jaffray DA
    Med Phys; 2011 Nov; 38(11):6160-70. PubMed ID: 22047381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Region-based snake with edge constraint for segmentation of lymph nodes on CT images.
    Yu P; Poh CL
    Comput Biol Med; 2015 May; 60():86-91. PubMed ID: 25756705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography.
    Guo Y; Zhou C; Chan HP; Chughtai A; Wei J; Hadjiiski LM; Kazerooni EA
    Med Phys; 2013 Aug; 40(8):081912. PubMed ID: 23927326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning for Weakly-Supervised Lymph Node Segmentation in CT Images.
    Li Z; Xia Y
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):774-783. PubMed ID: 32749988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching.
    Shi J; Sahiner B; Chan HP; Hadjiiski L; Zhou C; Cascade PN; Bogot N; Kazerooni EA; Wu YT; Wei J
    Med Phys; 2007 Apr; 34(4):1336-47. PubMed ID: 17500464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies.
    Vivanti R; Szeskin A; Lev-Cohain N; Sosna J; Joskowicz L
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1945-1957. PubMed ID: 28856515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LNAS: a clinically applicable deep-learning system for mediastinal enlarged lymph nodes segmentation and station mapping without regard to the pathogenesis using unenhanced CT images.
    Cao Y; Feng J; Wang C; Yang F; Wang X; Xu J; Huang C; Zhang S; Li Z; Mao L; Zhang T; Jia B; Li T; Li H; Zhang B; Shi H; Li D; Zhang N; Yu Y; Meng X; Zhang Z
    Radiol Med; 2024 Feb; 129(2):229-238. PubMed ID: 38108979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymph node segmentation by dynamic programming and active contours.
    Tan Y; Lu L; Bonde A; Wang D; Qi J; Schwartz LH; Zhao B
    Med Phys; 2018 May; 45(5):2054-2062. PubMed ID: 29500866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations.
    Ben-Cohen A; Klang E; Diamant I; Rozendorn N; Amitai MM; Greenspan H
    J Med Imaging (Bellingham); 2015 Jul; 2(3):034502. PubMed ID: 27014712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.