These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22047657)

  • 1. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures.
    Zhou Z; Yu Z; Meng Q
    Bioresour Technol; 2012 Jan; 103(1):173-9. PubMed ID: 22047657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen.
    Patra AK; Yu Z
    Bioresour Technol; 2013 Nov; 148():352-60. PubMed ID: 24063817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations.
    Patra AK; Yu Z
    J Appl Microbiol; 2015 Jul; 119(1):127-38. PubMed ID: 25846054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities.
    Patra AK; Yu Z
    Bioresour Technol; 2014 Mar; 155():129-35. PubMed ID: 24440491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations.
    Goel G; Makkar HP; Becker K
    Br J Nutr; 2009 May; 101(10):1484-92. PubMed ID: 19243639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios.
    Yang CJ; Mao SY; Long LM; Zhu WY
    Animal; 2012 Nov; 6(11):1788-94. PubMed ID: 22717128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.
    Patra AK; Yu Z
    J Dairy Sci; 2013 Mar; 96(3):1782-92. PubMed ID: 23332846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro.
    Patra AK; Stiverson J; Yu Z
    J Appl Microbiol; 2012 Dec; 113(6):1329-40. PubMed ID: 22925153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro.
    Bozic AK; Anderson RC; Carstens GE; Ricke SC; Callaway TR; Yokoyama MT; Wang JK; Nisbet DJ
    Bioresour Technol; 2009 Sep; 100(17):4017-25. PubMed ID: 19362827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep.
    van Zijderveld SM; Gerrits WJ; Apajalahti JA; Newbold JR; Dijkstra J; Leng RA; Perdok HB
    J Dairy Sci; 2010 Dec; 93(12):5856-66. PubMed ID: 21094759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials.
    Goel G; Makkar HP; Becker K
    J Appl Microbiol; 2008 Sep; 105(3):770-7. PubMed ID: 18422554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.
    Wang M; Wang R; Yang S; Deng JP; Tang SX; Tan ZL
    Anim Sci J; 2016 Feb; 87(2):224-32. PubMed ID: 26223853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of antibiotics and oil on microbial profiles and fermentation in mixed cultures of ruminal microorganisms.
    Johnson MC; Devine AA; Ellis JC; Grunden AM; Fellner V
    J Dairy Sci; 2009 Sep; 92(9):4467-80. PubMed ID: 19700708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meta-analysis of fumarate effects on methane production in ruminal batch cultures.
    Ungerfeld EM; Kohn RA; Wallace RJ; Newbold CJ
    J Anim Sci; 2007 Oct; 85(10):2556-63. PubMed ID: 17565060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec.
    Li X; Durmic Z; Liu S; McSweeney CS; Vercoe PE
    Anaerobe; 2014 Oct; 29():100-7. PubMed ID: 24225531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations.
    Patra AK; Yu Z
    Appl Environ Microbiol; 2012 Jun; 78(12):4271-80. PubMed ID: 22492451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rare earth element lanthanum on rumen methane and volatile fatty acid production and microbial flora in vitro.
    Zhang TT; Zhao GY; Zheng WS; Niu WJ; Wei C; Lin SX
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):442-8. PubMed ID: 25263819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of monolaurin on ruminal methanogens and selected bacterial species from cattle, as determined with the rumen simulation technique.
    Klevenhusen F; Meile L; Kreuzer M; Soliva CR
    Anaerobe; 2011 Oct; 17(5):232-8. PubMed ID: 21787874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.
    Mitsumori M; Shinkai T; Takenaka A; Enishi O; Higuchi K; Kobayashi Y; Nonaka I; Asanuma N; Denman SE; McSweeney CS
    Br J Nutr; 2012 Aug; 108(3):482-91. PubMed ID: 22059589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.