BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22047721)

  • 1. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.
    Lozano JC; Blanco Rodríguez P; Tomé FV; Calvo CP
    J Hazard Mater; 2011 Dec; 198():224-31. PubMed ID: 22047721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.
    Prieto C; Lozano JC; Blanco Rodríguez P; Tomé FV
    J Hazard Mater; 2013 Apr; 250-251():439-46. PubMed ID: 23500424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of uranium from contaminated soil by Macleaya cordata before and after application of EDDS and CA.
    Li CW; Hu N; Ding DX; Hu JS; Li GY; Wang YD
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6155-63. PubMed ID: 25399528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment.
    Polettini A; Pomi R; Rolle E
    Chemosphere; 2007 Jan; 66(5):866-77. PubMed ID: 16860848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of metal exchange in EDDS-flushing column experiments.
    Lo IM; Tsang DC; Yip TC; Wang F; Zhang W
    Chemosphere; 2011 Mar; 83(1):7-13. PubMed ID: 21316732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.
    Mohtadi A; Ghaderian SM; Schat H
    Chemosphere; 2013 Oct; 93(6):986-9. PubMed ID: 23806486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and desorption of uranium (VI) in aerated zone soil.
    Li X; Wu J; Liao J; Zhang D; Yang J; Feng Y; Zeng J; Wen W; Yang Y; Tang J; Liu N
    J Environ Radioact; 2013 Jan; 115():143-50. PubMed ID: 22939949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.
    Tandy S; Ammann A; Schulin R; Nowack B
    Environ Pollut; 2006 Jul; 142(2):191-9. PubMed ID: 16338042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl.
    Chen L; Wang D; Long C; Cui ZX
    Sci Rep; 2019 Dec; 9(1):19817. PubMed ID: 31875012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction.
    Grcman H; Vodnik D; Velikonja-Bolta S; Lestan D
    J Environ Qual; 2003; 32(2):500-6. PubMed ID: 12708673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Activation Process of Pb, Cd and Tl Using Chelating Agents from Contaminated Red Soils.
    Liu L; Luo D; Yao G; Huang X; Wei L; Liu Y; Wu Q; Mai X; Liu G; Xiao T
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31941097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.
    Wong JW; Wong WW; Wei Z; Jagadeesan H
    Sci Total Environ; 2004 May; 324(1-3):235-46. PubMed ID: 15081709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.