BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22047914)

  • 21. Impact factors and thermodynamic characteristics of aquatic humic acid loaded onto kaolin.
    Qinyan Y; Ying L; Baoyu G
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):241-7. PubMed ID: 19442497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid.
    Li Y; Yue Q; Gao B
    J Hazard Mater; 2010 Jun; 178(1-3):455-61. PubMed ID: 20149528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.
    Xue G; Liu H; Chen Q; Hills C; Tyrer M; Innocent F
    J Hazard Mater; 2011 Feb; 186(1):765-72. PubMed ID: 21163573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish.
    Hu X; Chen Q; Jiang L; Yu Z; Jiang D; Yin D
    Environ Pollut; 2011 May; 159(5):1151-8. PubMed ID: 21376439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic Nanoparticles Interaction with Humic Acid: In the Presence of Surfactants.
    Tang Z; Zhao X; Zhao T; Wang H; Wang P; Wu F; Giesy JP
    Environ Sci Technol; 2016 Aug; 50(16):8640-8. PubMed ID: 27404337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.
    Chowdhury I; Cwiertny DM; Walker SL
    Environ Sci Technol; 2012 Jul; 46(13):6968-76. PubMed ID: 22455349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish.
    Yang SP; Bar-Ilan O; Peterson RE; Heideman W; Hamers RJ; Pedersen JA
    Environ Sci Technol; 2013 May; 47(9):4718-25. PubMed ID: 23347333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy.
    Hoffmann M; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2012 Nov; 46(21):11788-97. PubMed ID: 23075303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid.
    Tan X; Fang M; Li J; Lu Y; Wang X
    J Hazard Mater; 2009 Aug; 168(1):458-65. PubMed ID: 19285793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of desorption of Pb (II), Cu (II) and Zn (II) from titanium dioxide nanoparticles.
    Hu J; Shipley HJ
    Sci Total Environ; 2012 Aug; 431():209-20. PubMed ID: 22684122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids.
    Sheng G; Li J; Shao D; Hu J; Chen C; Chen Y; Wang X
    J Hazard Mater; 2010 Jun; 178(1-3):333-40. PubMed ID: 20153111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles.
    Tan X; Wang X; Chen C; Sun A
    Appl Radiat Isot; 2007 Apr; 65(4):375-81. PubMed ID: 17157512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of paraquat on goethite and humic acid-coated goethite.
    Iglesias A; López R; Gondar D; Antelo J; Fiol S; Arce F
    J Hazard Mater; 2010 Nov; 183(1-3):664-8. PubMed ID: 20708336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of natural organic matter on arsenic mobilization from mine tailings.
    Wang S; Mulligan CN
    J Hazard Mater; 2009 Sep; 168(2-3):721-6. PubMed ID: 19297087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.
    Mahamadi C; Nharingo T
    Environ Technol; 2010 Oct; 31(11):1221-8. PubMed ID: 21046952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect.
    Rangel-Mendez JR; Monroy-Zepeda R; Leyva-Ramos E; Diaz-Flores PE; Shirai K
    J Hazard Mater; 2009 Feb; 162(1):503-11. PubMed ID: 18585858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competitive adsorption of organic matter with phosphate on aluminum hydroxide.
    Guan XH; Shang C; Chen GH
    J Colloid Interface Sci; 2006 Apr; 296(1):51-8. PubMed ID: 16236301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin.
    Demirbas A; Pehlivan E; Gode F; Altun T; Arslan G
    J Colloid Interface Sci; 2005 Feb; 282(1):20-5. PubMed ID: 15576076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between dissolved natural organic matter and adsorbed DNA and their effect on natural transformation of Azotobacter vinelandii.
    Lu N; Mylon SE; Kong R; Bhargava R; Zilles JL; Nguyen TH
    Sci Total Environ; 2012 Jun; 426():430-5. PubMed ID: 22542236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.