BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2204813)

  • 1. The leucine zipper of c-Myc is required for full inhibition of erythroleukemia differentiation.
    Smith MJ; Charron-Prochownik DC; Prochownik EV
    Mol Cell Biol; 1990 Oct; 10(10):5333-9. PubMed ID: 2204813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regions within the c-Myc protein that are necessary for transformation are also required for inhibition of differentiation of murine erythroleukemia cells.
    Bar-Ner M; Messing LT; Cultraro CM; Birrer MJ; Segal S
    Cell Growth Differ; 1992 Mar; 3(3):183-90. PubMed ID: 1633109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfected wild-type and mutant max regulate cell growth and differentiation of murine erythroleukemia cells.
    Cogliati T; Dunn BK; Bar-Ner M; Cultraro CM; Segal S
    Oncogene; 1993 May; 8(5):1263-8. PubMed ID: 8479748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization.
    Dang CV; Barrett J; Villa-Garcia M; Resar LM; Kato GJ; Fearon ER
    Mol Cell Biol; 1991 Feb; 11(2):954-62. PubMed ID: 1990293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein.
    Dang CV; McGuire M; Buckmire M; Lee WM
    Nature; 1989 Feb; 337(6208):664-6. PubMed ID: 2645525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of dimerization and DNA binding functions in Fos and Jun by domain-swapping: involvement of residues outside the leucine zipper/basic region.
    Cohen DR; Curran T
    Oncogene; 1990 Jun; 5(6):929-39. PubMed ID: 2113670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state.
    Chen J; Kremer CS; Bender TP
    Oncogene; 2002 Mar; 21(12):1859-69. PubMed ID: 11896618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the N-myc gene product by single amino acid substitution of leucine residues located in the leucine-zipper region.
    Nakajima H; Ikeda M; Tsuchida N; Nishimura S; Taya Y
    Oncogene; 1989 Aug; 4(8):999-1002. PubMed ID: 2668849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation.
    Rao G; Rekhtman N; Cheng G; Krasikov T; Skoultchi AI
    Oncogene; 1997 Jan; 14(1):123-31. PubMed ID: 9010239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD
    J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing fos oncoprotein to a jun-independent DNA binding protein with GCN4 dimerization specificity by swapping "leucine zippers".
    Sellers JW; Struhl K
    Nature; 1989 Sep; 341(6237):74-6. PubMed ID: 2505087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains.
    Gentz R; Rauscher FJ; Abate C; Curran T
    Science; 1989 Mar; 243(4899):1695-9. PubMed ID: 2494702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max.
    Västrik I; Mäkelä TP; Koskinen PJ; Alitalo K
    Oncogene; 1995 Aug; 11(3):553-60. PubMed ID: 7630640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continued withdrawal from the cell cycle and regulation of cellular genes in mouse erythroleukemia cells blocked in differentiation by the c-myc oncogene.
    Coppola JA; Parker JM; Schuler GD; Cole MD
    Mol Cell Biol; 1989 Apr; 9(4):1714-20. PubMed ID: 2657403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-myb but not c-myc suppresses the hemin-induced nonterminal expression of hemoglobin by murine erythroleukemia cells.
    Prochownik EV
    Blood; 1989 Feb; 73(3):782-6. PubMed ID: 2644989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional and post-transcriptional regulation of c-myc, c-myb, and p53 during proliferation and differentiation of murine erythroleukemia cells treated with DFMO and DMSO.
    Klinken SP; Holmes KL; Morse HC; Thorgeirsson SS
    Exp Cell Res; 1988 Oct; 178(2):185-98. PubMed ID: 2458948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation-dependent repression of c-myc, B22, COX II and COX IV genes in murine erythroleukemia (MEL) cells.
    Vizirianakis IS; Pappas IS; Tsiftsoglou AS
    Biochem Pharmacol; 2002 Mar; 63(5):1009-17. PubMed ID: 11911854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA binding by N- and L-Myc proteins.
    Ma A; Moroy T; Collum R; Weintraub H; Alt FW; Blackwell TK
    Oncogene; 1993 Apr; 8(4):1093-8. PubMed ID: 8455937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional domains of c-Myc involved in the commitment and differentiation of murine erythroleukemia cells.
    Ohmori Y; Tanabe J; Takada S; Lee WM; Obinata M
    Oncogene; 1993 Feb; 8(2):379-86. PubMed ID: 8426744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells.
    Barrett J; Birrer MJ; Kato GJ; Dosaka-Akita H; Dang CV
    Mol Cell Biol; 1992 Jul; 12(7):3130-7. PubMed ID: 1620120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.