These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22048735)

  • 1. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations.
    Mulliner D; Wondrousch D; Schüürmann G
    Org Biomol Chem; 2011 Dec; 9(24):8400-12. PubMed ID: 22048735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.
    Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G
    Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of Michael addition reactivity towards glutathione by transition-state calculations.
    Schwöbel JA; Madden JC; Cronin MT
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):693-710. PubMed ID: 21120757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates.
    Böhme A; Thaens D; Paschke A; Schüürmann G
    Chem Res Toxicol; 2009 Apr; 22(4):742-50. PubMed ID: 19317512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds.
    Yarbrough JW; Schultz TW
    Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis.
    Schwöbel JA; Madden JC; Cronin MT
    Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoavailability of Organic Electrophiles: Impact of Hydrophobicity and Reactivity on Their Aquatic Excess Toxicity.
    Böhme A; Laqua A; Schüürmann G
    Chem Res Toxicol; 2016 Jun; 29(6):952-62. PubMed ID: 27096880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.
    Schultz TW; Netzeva TI; Roberts DW; Cronin MT
    Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes.
    Furuhama A; Aoki Y; Shiraishi H
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):169-84. PubMed ID: 22150015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis.
    Schultz TW; Sparfkin CL; Aptula AO
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Suite for Predicting the Aquatic Toxicity of α,β-Unsaturated Esters Triggered by Their Chemoavailability.
    Mulliner D; Schüürmann G
    Mol Inform; 2013 Jan; 32(1):98-107. PubMed ID: 27481027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of michael-type acceptor reactivity toward glutathione.
    Schwöbel JA; Wondrousch D; Koleva YK; Madden JC; Cronin MT; Schüürmann G
    Chem Res Toxicol; 2010 Oct; 23(10):1576-85. PubMed ID: 20882991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis.
    Roberts DW; Schultz TW; Wolf EM; Aptula AO
    Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophilicity as a possible descriptor for toxicity prediction.
    Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.
    Slawik C; Rickmeyer C; Brehm M; Böhme A; Schüürmann G
    Environ Sci Technol; 2017 Apr; 51(7):4018-4026. PubMed ID: 28225253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis.
    Kar S; Harding AP; Roy K; Popelier PL
    SAR QSAR Environ Res; 2010 Jan; 21(1):149-68. PubMed ID: 20373218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alerts for the excess toxicity of acrylates, methacrylates, and propiolates derived from their short-term and long-term bacterial toxicity.
    Blaschke U; Eismann K; Böhme A; Paschke A; Schüürmann G
    Chem Res Toxicol; 2012 Jan; 25(1):170-80. PubMed ID: 22117088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates.
    Schultz TW; Yarbrough JW; Woldemeskel M
    Cell Biol Toxicol; 2005; 21(3-4):181-9. PubMed ID: 16328896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds.
    Schultz TW; Yarbrough JW
    SAR QSAR Environ Res; 2004 Apr; 15(2):139-46. PubMed ID: 15199949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of reactive toxicants: structure-activity relationships for amides.
    Schultz TW; Yarbrough JW; Koss SK
    Cell Biol Toxicol; 2006 Sep; 22(5):339-49. PubMed ID: 16845611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.