These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22049099)

  • 1. Polarization fields of III-nitrides grown in different crystal orientations.
    Feneberg M; Thonke K
    J Phys Condens Matter; 2007 Oct; 19(40):403201. PubMed ID: 22049099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced radiative recombination and suppressed Auger process in semipolar and nonpolar InGaN/GaN quantum wells grown over GaN nanowires.
    You G; Liu J; Jiang Z; Wang L; El-Masry NA; Hosalli AM; Bedair SM; Xu J
    Opt Lett; 2014 Mar; 39(6):1501-4. PubMed ID: 24690823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures.
    Sari E; Nizamoglu S; Choi JH; Lee SJ; Baik KH; Lee IH; Baek JH; Hwang SM; Demir HV
    Opt Express; 2011 Mar; 19(6):5442-50. PubMed ID: 21445183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Evaluation of Various Spontaneous Polarization Models and Induced Electric Fields in III-Nitride Multi-Quantum Wells.
    Ahmad A; Strak P; Koronski K; Kempisty P; Sakowski K; Piechota J; Grzegory I; Wierzbicka A; Kryvyi S; Monroy E; Kaminska A; Krukowski S
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.
    Song H; Kim JS; Kim EK; Seo YG; Hwang SM
    Nanotechnology; 2010 Apr; 21(13):134026. PubMed ID: 20208099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization effects on quantum levels in InN/GaN quantum wells.
    Lin W; Li S; Kang J
    Nanotechnology; 2009 Dec; 20(48):485204. PubMed ID: 19887708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically driven green, olivine, and amber color nanopyramid light emitting diodes.
    Chang SP; Chang JR; Sou KP; Liu MC; Cheng YJ; Kuo HC; Chang CY
    Opt Express; 2013 Oct; 21(20):23030-5. PubMed ID: 24104218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al0.5Ga0.5N quantum dots: strong effect of capping layer and atmospheric condition.
    Kim JH; Elmaghraoui D; Leroux M; Korytov M; Vennéguès P; Jaziri S; Brault J; Cho YH
    Nanotechnology; 2014 Aug; 25(30):305703. PubMed ID: 25008561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential phase contrast 2.0--opening new "fields" for an established technique.
    Lohr M; Schregle R; Jetter M; Wächter C; Wunderer T; Scholz F; Zweck J
    Ultramicroscopy; 2012 Jun; 117():7-14. PubMed ID: 22634135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band Alignments of Ternary Wurtzite and Zincblende III-Nitrides Investigated by Hybrid Density Functional Theory.
    Tsai YC; Bayram C
    ACS Omega; 2020 Mar; 5(8):3917-3923. PubMed ID: 32149218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum confined Stark effect of InGaN/GaN multi-quantum disks grown on top of GaN nanorods.
    Park YS; Holmes MJ; Kang TW; Taylor RA
    Nanotechnology; 2010 Mar; 21(11):115401. PubMed ID: 20173227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays.
    Chen LY; Huang HH; Chang CH; Huang YY; Wu YR; Huang J
    Opt Express; 2011 Jul; 19 Suppl 4():A900-7. PubMed ID: 21747560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays.
    Huang YY; Chen LY; Chang CH; Sun YH; Cheng YW; Ke MY; Lu YH; Kuo HC; Huang J
    Nanotechnology; 2011 Jan; 22(4):045202. PubMed ID: 21157011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bias-Controlled Optical Transitions in GaN/AlN Nanowire Heterostructures.
    Müßener J; Hille P; Grieb T; Schörmann J; Teubert J; Monroy E; Rosenauer A; Eickhoff M
    ACS Nano; 2017 Sep; 11(9):8758-8767. PubMed ID: 28771318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures.
    Chaisakul P; Marris-Morini D; Isella G; Chrastina D; Le Roux X; Gatti E; Edmond S; Osmond J; Cassan E; Vivien L
    Opt Lett; 2010 Sep; 35(17):2913-5. PubMed ID: 20808367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides.
    Chaisakul P; Marris-Morini D; Isella G; Chrastina D; Le Roux X; Edmond S; Coudevylle JR; Cassan E; Vivien L
    Opt Lett; 2011 May; 36(10):1794-6. PubMed ID: 21593893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga(1-x)In(x)N.
    Do EC; Shin YH; Lee BJ
    J Phys Condens Matter; 2009 Aug; 21(32):325801. PubMed ID: 21693973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Effect of Carrier Localization and Polarity in InxGa1-xN/GaN Quantum Wells.
    Hwang HY; Choi SB; Jeong H; Lee DS; Jho YD
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5933-6. PubMed ID: 26369174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical polarization properties of m-plane AlxGa1-xN epitaxial films grown on m-plane freestanding GaN substrates toward nonpolar ultraviolet LEDs.
    Hazu K; Chichibu SF
    Opt Express; 2011 Jul; 19 Suppl 4():A1008-21. PubMed ID: 21747529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band gap engineering of In(Ga)N/GaN short period superlattices.
    Gorczyca I; Suski T; Strak P; Staszczak G; Christensen NE
    Sci Rep; 2017 Nov; 7(1):16055. PubMed ID: 29167513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.