These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22049119)

  • 21. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses.
    Fu Z; Yamaguchi M
    Sci Rep; 2016 Dec; 6():38264. PubMed ID: 27905563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Second harmonic generation and confined acoustic phonons in highly excited semiconductor nanocrystals.
    Son DH; Wittenberg JS; Banin U; Alivisatos AP
    J Phys Chem B; 2006 Oct; 110(40):19884-90. PubMed ID: 17020374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses.
    Kim JH; Han KJ; Kim NJ; Yee KJ; Lim YS; Sanders GD; Stanton CJ; Booshehri LG; Hároz EH; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037402. PubMed ID: 19257393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy.
    Dudovich N; Oron D; Silberberg Y
    Nature; 2002 Aug; 418(6897):512-4. PubMed ID: 12152073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot.
    Wigger D; Lüker S; Reiter DE; Axt VM; Machnikowski P; Kuhn T
    J Phys Condens Matter; 2014 Sep; 26(35):355802. PubMed ID: 25115958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent external and internal phonons in quasi-one-dimensional organic molecular crystals.
    Hasche T; Canzler TW; Scholz R; Hoffmann M; Schmidt K; Frauenheim T; Leo K
    Phys Rev Lett; 2001 Apr; 86(18):4060-3. PubMed ID: 11328095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses.
    Konar A; Lozovoy VV; Dantus M
    J Phys Chem Lett; 2012 Sep; 3(17):2458-64. PubMed ID: 26292133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.
    Yoshino S; Oohata G; Mizoguchi K
    Phys Rev Lett; 2015 Oct; 115(15):157402. PubMed ID: 26550752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical control of coherent lattice motions probed by femtosecond electron diffraction.
    Park H; Nie S; Wang X; Clinite R; Cao J
    J Phys Chem B; 2005 Jul; 109(29):13854-6. PubMed ID: 16852738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation.
    Hase M; Kitajima M; Nakashima S; Mizoguchi K
    Phys Rev Lett; 2002 Feb; 88(6):067401. PubMed ID: 11863848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High wavevector optical phonons in microstructured Bismuth films.
    Chen Z; Minch BC; DeCamp MF
    Opt Express; 2010 Mar; 18(5):4365-70. PubMed ID: 20389448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitation of coherent optical phonons in iron garnet by femtosecond laser pulses.
    Khan P; Kanamaru M; Hsu WH; Kichise M; Fujii Y; Koreeda A; Satoh T
    J Phys Condens Matter; 2019 Jul; 31(27):275402. PubMed ID: 30952151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of molecular fragmentation using shaped femtosecond pulses.
    Lozovoy VV; Zhu X; Gunaratne TC; Harris DA; Shane JC; Dantus M
    J Phys Chem A; 2008 May; 112(17):3789-812. PubMed ID: 18433144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of coherent zone boundary phonons by impulsive excitation of molecules.
    Gühr M; Bargheer M; Schwentner N
    Phys Rev Lett; 2003 Aug; 91(8):085504. PubMed ID: 14525255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy.
    Neufeld O; Zhang J; De Giovannini U; Hübener H; Rubio A
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2204219119. PubMed ID: 35704757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.
    He B; Zhang C; Zhu W; Li Y; Liu S; Zhu X; Wu X; Wang X; Wen HH; Xiao M
    Sci Rep; 2016 Jul; 6():30487. PubMed ID: 27457385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers.
    Isaienko O; Robel I
    Sci Rep; 2016 Mar; 6():23031. PubMed ID: 26975881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoinduced multimode coherent acoustic phonons of metallic nanoprisms and the effects of shape-induced anisotropic electronic stresses.
    Tai PT; Yu P; Tang J
    J Chem Phys; 2011 May; 134(18):184506. PubMed ID: 21568520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses.
    Doll A; Jeschke G
    J Magn Reson; 2014 Sep; 246():18-26. PubMed ID: 25063952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.