These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 22049160)
1. Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Bermúdez-Aguirre D; Guerrero-Beltrán JÁ; Barbosa-Cánovas GV; Welti-Chanes J Food Sci Technol Int; 2011 Dec; 17(6):541-7. PubMed ID: 22049160 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock. Tribst AA; Franchi MA; Cristianini M; de Massaguer PR J Food Sci; 2009; 74(9):M509-14. PubMed ID: 20492122 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. Buzrul S; Alpas H; Largeteau A; Demazeau G Int J Food Microbiol; 2008 Jun; 124(3):275-8. PubMed ID: 18455820 [TBL] [Abstract][Full Text] [Related]
4. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment. Tribst AA; Franchi MA; de Massaguer PR; Cristianini M J Food Sci; 2011 Mar; 76(2):M106-10. PubMed ID: 21535772 [TBL] [Abstract][Full Text] [Related]
5. Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. Tejada-Ortigoza V; Escobedo-Avellaneda Z; Valdez-Fragoso A; Mújica-Paz H; Welti-Chanes J J Sci Food Agric; 2015 Sep; 95(12):2438-44. PubMed ID: 25345712 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of 'Ataulfo' Mango Nectar. Uranga-Soto MA; Vargas-Ortiz MA; León-Félix J; Heredia JB; Muy-Rangel MD; Chevalier-Lucia D; Picart-Palmade L Molecules; 2022 Feb; 27(4):. PubMed ID: 35208978 [TBL] [Abstract][Full Text] [Related]
7. Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Koseki S; Yamamoto K Int J Food Microbiol; 2006 Jul; 110(1):108-11. PubMed ID: 16682092 [TBL] [Abstract][Full Text] [Related]
8. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice. Torres EF; González-M G; Klotz B; Rodrigo D Food Sci Technol Int; 2016 Mar; 22(2):173-80. PubMed ID: 25888680 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide. Liao H; Hu X; Liao X; Chen F; Wu J Int J Food Microbiol; 2007 Sep; 118(2):126-31. PubMed ID: 17689768 [TBL] [Abstract][Full Text] [Related]
10. Biphasic inactivation kinetics of Escherichia coli in liquid whole egg by high hydrostatic pressure treatments. Lee DU; Heinz V; Knorr D Biotechnol Prog; 2001; 17(6):1020-5. PubMed ID: 11735435 [TBL] [Abstract][Full Text] [Related]
11. Pasteurization of fruit juices of different pH values by combined high hydrostatic pressure and carbon dioxide. Li W; Pan J; Xie H; Yang Y; Zhou D; Zhu Z J Food Prot; 2012 Oct; 75(10):1873-7. PubMed ID: 23043841 [TBL] [Abstract][Full Text] [Related]
12. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds. Neetoo H; Ye M; Chen H Int J Food Microbiol; 2008 Dec; 128(2):348-53. PubMed ID: 18954917 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulation as a method to determine the critical factors affecting two strains of Escherichia coli inactivation kinetics by high hydrostatic pressure. Pina-Pérez MC; García-Fernández MM; Rodrigo D; Martínez-López A Foodborne Pathog Dis; 2010 Apr; 7(4):459-66. PubMed ID: 19958101 [TBL] [Abstract][Full Text] [Related]
14. Effect of mild-heat and high-pressure processing on banana pectin methylesterase: a kinetic study. Ly-Nguyen B; Van Loey AM; Smout C; Verlent I; Duvetter T; Hendrickx ME J Agric Food Chem; 2003 Dec; 51(27):7974-9. PubMed ID: 14690382 [TBL] [Abstract][Full Text] [Related]
15. High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation. Riahi E; Ramaswamy HS Biotechnol Prog; 2003; 19(3):908-14. PubMed ID: 12790656 [TBL] [Abstract][Full Text] [Related]
16. Effect of high pressure and thermal processing on spoilage-causing enzymes in mango (Mangifera indica). Kaushik N; Rao PS; Mishra HN Food Res Int; 2017 Oct; 100(Pt 1):885-893. PubMed ID: 28873763 [TBL] [Abstract][Full Text] [Related]
17. Microbial and Sensory Effects of Combined High Hydrostatic Pressure and Dense Phase Carbon Dioxide Process on Feijoa Puree. Duong T; Balaban M; Perera C; Bi X J Food Sci; 2015 Nov; 80(11):E2478-85. PubMed ID: 26444875 [TBL] [Abstract][Full Text] [Related]
18. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp. Kaushik N; Nadella T; Rao PS J Food Sci; 2015 Nov; 80(11):E2459-70. PubMed ID: 26444301 [TBL] [Abstract][Full Text] [Related]
19. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. Kim SR; Rhee MS; Kim BC; Kim KH Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of apple pectin methylesterase induced by dense phase carbon dioxide. Zhi X; Zhang Y; Hu X; Wu J; Liao X J Agric Food Chem; 2008 Jul; 56(13):5394-400. PubMed ID: 18540616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]